

DeliAPI 2 Documentation Version 1.0

The player plugin API for DeliPlayer Version 2.50 and higher

DeliAPI 2 © 1997-2004 by Florian Vorberger and Peter Kunath
DeliPlayer © 1997-2004 by Florian Vorberger and Peter Kunath

Introduction .. 5

Contents of the DeliAPI 2 package .. 5
Basics.. 5

Architecture .. 6
Special features of the DeliAPI 2 ... 6

How to develop a player plugin ... 7
Basic steps for implementing a player plugin .. 7
Implementing the replay code .. 10

Allocating and initializing channels ... 10
Playing samples.. 11
Loading secondary files.. 12

Seeking ... 13
SetPosition.. 13
StartSkip and StopSkip... 13
Replay State Block ... 13

Data types used by the DeliAPI 2 .. 14
DeliTag... 14
DELITagId ... 14
DELITagValue ... 14
DELIBool ... 14
DELIFile... 14
DELIResult... 14
DELIVersion .. 14
DeliNamedVariable.. 14
DeliNamedVariableValue .. 14

Player plugin interfaces .. 15
GetDeliPlayerPluginContainer... 16

IDeliPluginContainer.. 16
Initialize.. 16
Cleanup... 16
Information... 16
GetIID... 16
CreateInstance .. 16

IDeliPluginPlayer ... 17
InitPlugin .. 17
EndPlugin ... 17
PluginInformation .. 17
SetVariable ... 17
GetVariable .. 17
SetVariablesApplyMode .. 18
Notify.. 18
ConfigDialogOpen ... 18
ConfigDialogClose... 18
ConfigDialogApply .. 18
ConfigDialogRestore.. 18
ConfigDefault ... 19

ConfigApply... 19
ConfigSave ... 19
ConfigLoad... 19
ConfigChanged... 19
Check.. 19
InitModule .. 20
EndModule ... 20
InitSong .. 20
EndSong ... 20
StartPlay ... 20
StopPlay.. 21
StartSkip ... 21
StopSkip ... 21
RenderFrame .. 21
SetPosition.. 21
SongInformation... 22
InstrumentInformation.. 22
SampleInformation... 22
MessageInformation... 22
FormatInformation ... 23
FileExtensionInformation... 23

IDeliSocketPlayer interface..24
InitReplay ... 25
InitChannel ... 25
SetStateData ... 25
GetStateData... 25
SetConfigData .. 26
GetConfigData.. 26
GetOutputFrequency .. 26
SetTotalFileSize ... 26
SetTotalRealSize .. 27
ReplayInformationChanged ... 27
ReplaySetSpeed.. 27
ReplayNotifySongEnd.. 27
ReplaySetSample.. 27
ReplayStopSample ... 28
ReplaySetRepeat ..28
ReplayFinishRepeat.. 28
ReplaySetVolume... 28
ReplaySetPan.. 28
ReplaySetFrequency... 28
ReplayInvertPlayingDirection.. 29
FileLoad.. 29
FileSeek.. 29
FileRead.. 29
FileTell ... 29
FileGet .. 30

FileAlloc... 30
FileUnload.. 30
FileGetData .. 30
FileGetName .. 30

Appendix .. 32
Terminology ... 32
License.. 33

Introduction
Creating software plugins can be easy and rewarding if the API of the application actually
helps the plugin developer to build the necessary bridging code.
We think the DeliPlayer API achieves this through its straight forward design, the included
helper classes, the plugin skeleton source, the included source code of two players and this
documentation.
If, after reading the documentation, you have questions on how to use specific features of the
API, if you are not sure on how to support a specific feature of the player you are adapting or
have suggestions for future versions of the API, then please join the development forum on the
DeliPlayer web site:
 http://www.deliplayer.com/forum2/phpBB2/viewforum.php?f=9
You can also inquire there if someone else is already working on a replay that you plan to
adapt.

Contents of the DeliAPI 2 package
The DeliAPI 2 package is a ZIP archive with the following directory structure:

DeliAPI2 package

includes

documentation

sources helper

Player_Shorten

Player_MixingDemo

skeleton player sources

The helper class and its
(partial) implementation.

Source code of a streaming
player plugin

Source code of a mixing
player plugin

Skeleton source-codes for
quickly building new player

plugins

ideliapi.h

deliapi2.pdf

The DeliAPI 2 does not contain or require a static link library (.lib). The API is described
completely in the ideliapi.h header file. The helper class is included as source code.

Basics
The DeliAPI basically consist of three interfaces, IDeliPluginSocketPlayer,
IDeliPluginPlayer and IDeliPluginContainer. Player plugins implement the
IDeliPluginPlayer and IDeliPluginContainer interfaces. DeliPlayer provides an object
that implements the IDeliPluginSocketPlayer interface to the each plugin to expose its API
functions.
Player plugin developers using the provided helper classes only need to implement a subset of
the IDeliPluginPlayer interface.

http://www.deliplayer.com/forum2/phpBB2/viewforum.php?f=9

Architecture

‚ Plugins are standard Windows DLLs (Dynamic Link Libraries)
‚ One plugin DLL can contain one or more plugins.
‚ Uses an object-oriented design
‚ All API objects are COM objects. (see below why the plugin developer is not affected

by this ‘issue’)

Special features of the DeliAPI 2

‚ Supports three methods for seeking in songs.
‚ Player plugins can use DeliPlayer’s mixer to mix channels, they do not need to contain

own mixing routines.

DeliPlayer plugins directly expose only one function through the DLL. This function
(GetDeliPluginContainer) is called by DeliPlayer to retrieve a pointer to the container object
of the plugin. The container object (Singleton) contains information about the plugin DLL and
creates the plugin instances (Abstract Factory).
DeliPlayer then retrieves the types of the plugins this container supports. A container can
contain one to several players. However, is it strongly recommended to create one plugin DLL
per player.
DeliPlayer then creates several (at least two) instances per player class. Plugin developers must
create thread-safe (reentrant) code because DeliPlayer uses the instances simultaneously.
Should it be impossible to write a thread-safe player because the code you use is not thread-safe
and too complex to make thread-safe, then you can let DeliPlayer know that the plugin DLL
contains non thread-safe code. In this case DeliPlayer will still create several instances of the
player but will not use them simultaneously. As a consequence, DeliPlayer will not be able to
cross-fade two tunes of this format, nor is it possible to pre-load a song in the format while
another song is already playing.
Obviously it is highly recommended to write only thread-safe players, primarily because it is
confusing for users why some formats behave differently than others.
Code that uses only one single global/static variable not purely const (read only) is not thread-
safe. There is no such thing like ‘mostly’ thread-safe. The results of not declaring your thread-
unsafe code as such range from erratic replay to being completely unstable.

The container object as well as the player objects are COM (Component Object Model) objects.
This means they derive from the IUnknown interface and all COM programming rules apply to
them. The container and player interfaces are defined in the ideliapi.h header file.
Included in the DeliAPI is a helper class that completely hides the COM nature of DeliPlayer’s
API so you can focus on writing the player code itself.
After a player object is instantiated, it receives a pointer to an object that implements the
IDeliSocketPlayer interface which contains all functions that DeliPlayer exposes to its
plugins. The socket contains functions to

‚ Extract data from DeliPlayer’s file handles (DELIFile)
‚ Load secondary files
‚ Replay functions, including functions to use DeliPlayer’s mixer

How to develop a player plugin
First of all, you don’t have to deal with the ‘gory’ details of the DeliPlayer API. Included in the
DeliPlayer API is the C++ source code of a helper class that takes care of all COM related
tasks. The API also contains two example players that demonstrate how mixing and streaming
players work.
We highly recommend to always use the helper class from the DeliAPI package, because then
your plugin is much more likely to remain source level compatible with later versions of the
DeliAPI.

Using the supplied skeleton source as starting point for your player has the following
advantages:

1. the player will compile, link and be loadable in DeliPlayer from the beginning on
(provided the code you write is ok)

2. the skeleton imposes no overhead to your plugin (neither in size nor CPU time)
3. the developer does not have to deal with or even be aware of COM programming rules
4. the skeleton contains comments that help you understand the purpose of each method

and its arguments
5. by following the skeleton’s TODO comments the developer is guided through the

implementation process

Basic steps for implementing a player plugin
This section describes the basic steps needed to create a player plugin for DeliPlayer.

Microsoft Visual C++ 6.0 is used as development environment because it is widely spread. If
you want to use another compiler/development environment you can of course do that, but you
will have to figure out yourself if your compiler/IDE contains a project wizard that creates
MFC application DLL projects and how to use it. If you use Microsoft Visual C++ 7.x (.NET
2003) the steps are very similar.
Because we want the player to have a configuration dialog (window) we use the MFC
(Microsoft Foundation Classes) framework.

a. Start by creating the project for the player plugin and adding the skeleton plugin files to
the project:

‚ Launch the development environment (e.g. Visual C++ 6.0).
‚ Open the ‘File’ menu and click ‘New’, click on the ‘Projects’ tab in the opened

window and select MFC AppWizard (DLL).
‚ Enter the project name (something like ‘DP_Player_XYZ’), modify the position

of the project as you see fit and press ‘OK’. The default settings in the next
dialog are OK, so continue with ‘Finish’ and acknowledge with ‘OK’.

‚ Open a file manager (e.g. Windows Explorer, Total Commander) and copy the
skeleton player files from the DeliAPI package to the directory of the project
you just created.

‚ In Visual C++ open the ‘Project’ menu, click ‘Add to Project / Files’ and select
all skeleton source files (*.cpp and *.h) that you have copied into the project
directory in the previous step.

The project should now compile, link and already be loadable by DeliPlayer.

b. Once the project is set up and contains the skeleton player sources you have to fill in the
actual player code. The skeleton and the helper class already implement all necessary
interfaces for the player plugin. You now have to insert your code into the correct
placeholders.
Insert/write the check code that recognizes music files in the particular format the
player supports. (Check())

‚ Insert/write the initialization code that prepares the tune/plugin for playback.
(InitModule() and InitSong() as well as EndModule() and EndSong())

‚ Insert/write the actual replay code. (RenderFrame())

At this point the player plugin should already load and play files in the supported
format(s).

c. Adjust the PluginInformation(), FormatInformation() and

FileExtensionInformation() implementations to provide DeliPlayer (and the user)
with information about the player plugin itself (e.g. name, author, version and
copyright).
Adjust the SongInformation(), InstrumentInformation(), SampleInformation()
and MessageInformation() implementations to expose as much information as
possible about the currently playing tune (e.g. song name, instrument names, author)

d. Decide which settings your player needs to expose to the user. You should expose as

few (none) settings as possible because it is often hard to understand the effects of
player settings unless you have actually written the player.
Implement the ConfigLoad(), ConfigSave(), ConfigApply(), ConfigDefaults()
and ConfigChanged() functions.

e. Design the configuration dialog and write the code to initialize the dialog controls and
retrieve their content.

‚ Add a dialog resource to the project via the menu Insert/Resource.
‚ The first thing you should do is right click into the dialog and open its Properties

window from the context menu. Go to the Styles tab, set the Style to ‘Child’, un-
check the Title bar checkbox and select ‘None’ in the Border combobox.

‚ Add all required controls to the dialog (do not forget to verify/adjust the tab-
order (see menu Layout/Tab Order)).

‚ Open the MFC ClassWizard, which should immediately ask if you want to
create a new class for the dialog, which you should do. Give the class an
explanative name like CConfigDlg an exit with OK.

‚ In the MFC ClassWizard create Message Maps and Member Variables (variable
bindings) as you see fit, and add the necessary code to initialize the controls and
retrieve their content.

‚ Implement the ConfigDialogOpen(), ConfigDialogClose(),
ConfigDialogApply() and ConfigDialogRestore() functions.

f. Debugging and testing. You should be especially careful about the check routine and
sanity checks of the files you are loading.

‚ Ten fold check your check routine. Don’t laugh, do it. DeliPlayer already
supports several hundred formats amongst which are some formats that have
proven to possess qualities of a chimera. Many users add directories with lots of
potential music files and rely on DeliPlayer to pick out those files that are
actually supported. Your player will very likely come across some files that look
very much the files in your format but are actually something completely
different. Very small and very big files are also potential problems. To avoid
unpleasant surprises you should make your check routine as strong as possible
and test it thoroughly.
Do not even think about relying on file extensions (e.g. .mod) to identify a
certain format. Your player is guaranteed to crash or behave very weird each
time a file is loaded that accidentally has the extension you check for but is not
in the format you expect.

‚ The more popular the format your player supports is, the more likely it is that
you will have to deal with severely damages files, incomplete files and files
saved by slightly modified versions of the editor software. If in doubt, better
reject a file first instead of crashing later.

If your player does not need a configuration dialog it is still a good idea to create a project that
supports MFC so if you later decide to implement a configuration dialog you can do this
without having to create a new project. Also, the MFC framework provides several useful types
like CString, CList and CArray.

Implementing the replay code

Allocating and initializing channels
Before you can play sound using the ReplaySetSample()/ReplaySetRepeat() functions, you
have to call the InitReplay() function first. Besides allocating a given number of (virtual)
channels, this function does also some other important things:

‚ The number of channels depends on the format (and files) you want to play. If a format
supports stereo samples, it is recommended to allocate only one channel and to play
stereo samples on it instead of splitting a stereo sample into two mono samples.

‚ The maxvolume and maxpanning parameters specify the maximum volume and
panning values the player uses. Volume values higher than the maxvolume parameter
are clipped to maxvolume. Setting maxpanning to zero disables variable panning
for this player. Both arguments help DeliPlayer to compute the overall sound output
level of all channels properly.

‚ Players can operate in either period or frequency mode. If you specify a periodbase
of zero, the arguments of a ReplaySetFrequency() call are treated as frequencies.
Otherwise, the sample playback rate (in Hz) can be calculated as follows:
playback_rate := period_base / setfrequency_argument

‚ DeliPlayer distinguishes between mixing and streaming players. Mixing players are
players where the instruments (which usually play at different frequencies) have to be
mixed to single output stream playing at e.g. 44100Hz. All tracker players fall into this
category. The speed at which the RenderFrame() routine of a player is called can be
specified in two ways for mixing players:
1. if timerbase is not zero, the timerspeed parameter acts as a divider for the

timerbase. The following formula can be used to compute the number of calls
which occur per second:
renderframe_rate := timer_base / timer_speed

2. if timerbase is set to zero, the timerspeed value specifies the ProTracker BPM
tempo at which the player is called

In either case, the ReplaySetSpeed() function can be used during playback to modify
the current playback speed.

If both timerbase and timerspeed are set to zero, a player operates in streaming
mode. This mode is used for formats where the player itself generates the output
samples in real-time or when the samples are loaded from disk. The rate at which the
player is called is then determined by the length and the frequency of the playing
samples. As a consequence, all playing samples must have the same length and
frequency if several samples are played simultaneously in streaming mode.
Furthermore, it is recommended to split the samples into chunks which have a length of
approximately 1/100 to 1/10 second.

Once you have allocated some channels, it is recommended to initialize each channel to valid
initial values by using the InitChannel() function. You can set the initial channel number
(Mono/Stereo), resolution, frequency, volume and panning for an instrument playing on a
certain channel. The initial vales are overwritten by a subsequent ReplaySet*() function calls.

Although it is recommended to allocate only the minimum number of channels needed for
playing a certain song or sample, it is possible to allocate more channels and to disable the
inactive channels. This can be done by setting the numchannels argument of InitChannel()
to zero. If a channel is disabled, DeliPlayer ignores all ReplaySetSample() and
ReplaySetRepeat() calls for this channel.

Playing samples
The DeliPlayer API splits samples into a one-shot part and into a repeat part (often also called
loop part of a sample). See for example the following sample which consists of a leading sine
part and a trailing rectangle part.

Let's say we want to play this sample with DeliPlayer. In the following, we use the sine part
(time index 0 - 19) as one-shot, and the square part (time index 20 - 39) as repeat part. Let us
further assume that the sample is located at offset 0x123456 in memory, is signed, mono and
has a resolution of 8 bits. Then the function call plays the sample on the output channel 3:

ReplaySetSample(3, 1, 8, 0x123456, 20);

Note that we have not set the loop part of the sample yet. If we omit the following
ReplaySetRepeat() call, DeliPlayer plays only the one-shot part specified above, then the
sample stops. To play the square part in a looped way, we make the following call:

ReplaySetRepeat(3, 1, 8, 0x123456+20, 20);

Because the loop part starts 20 bytes after the one-shot part, we add 20 to the base address of
the sample. The size of the loop is again 20, so we use 20 as repeat length (all other sample
attributes like the channel number and the resolution are assumed to be identical).

Some remarks about the ReplaySetSample/ReplaySetRepeat functions:

‚ Mono and stereo samples are supported. Set the numChannels argument to 1 for mono
samples, for stereo samples set it to 2. In case of stereo samples, the sample data must
be interleaved, starting with the left channel (i.e. left0, right0, left1, right1, and so on).
Samples which have a numChannels argument of zero are not mixed.

‚ The sample data must be signed (if the samples of the module/sound format you're
planning play are unsigned, you have to convert them to signed format first).

‚ The sample resolution (i.e. the bits per sample) can be either 1 - 16 bit for integer
samples or 32 bit for float samples. 1 - 8 bit samples have to be in signed char format
(i.e. one byte per sample), 9 - 16 bit samples have to be in signed short format (i.e. two
bytes per sample, Intel byte ordering). float samples have to be normalized to the
range [-1.0..+1.0]. For integer samples, simply supply the bits per sample value as
resolution. For float samples, supply zero as resolution.

‚ Both the length of the one-shot part and the length of the repeat part of a sample have to
be specified in samples, not bytes. In case of stereo samples, the length has to be
specified as number of stereo sample pairs.

‚ While a sample is playing, the repeat part of the sample can be modified by subsequent
ReplaySetRepeat() function calls. Changing the loop part of a sample usually doesn't
have an effect immediately. Instead, DeliPlayer completely plays the current part (either
one-short or repeat). Once this part as reached the end, the playback of the newly set
repeat part starts. If DeliPlayer should immediately play the specified looped sample
you have to additionally call ReplaySetSample() with the same sample pointer and
length.

To actually play a song, calling ReplaySetSample or ReplaySetRepeat is usually not enough.
You also have to set the frequency (i.e. playback rate) and the volume of the sample as well.
Often, a ReplaySetFrequency/ReplaySetVolume call occurs along with ReplaySetSample.
Note that a frequency of zero stops a playing sample when in frequency mode and setting the
frequency to a value greater than zero resumes the sample from the stopped point. The volume
of the sample can be set with the ReplaySetVolume() function. The panning function calls are
optional. When not used, a sample is played at the center position.

Loading secondary files
Players sometimes need to load secondary files that belong to the module that the user wants to
play. See FileLoad() and FileGetData(). Loading of additional files should be done in
InitModule() because this function is called exactly once for each module. Player should
always use the file operation functions from the DeliAPI because DeliPlayer handles archive
extraction and decompression on its own. If for example the user plays a tune from a ZIP
archive and the player needs to load a secondary file (also contained in the ZIP archive) then
using the DeliAPI file functions automatically extracts the file from the archive, whereas the
player would have a quite difficult time doing the same on its own.
If a player needs to load additional files that do not belong to a module, e.g. static tables and
configuration files, then FileLoad() can not be used because FileLoad() can only be called
in or after InitModule() and the loaded files are automatically unloaded after EndModule().
Use fopen(), CreateFile(), ifstream or similar instead.

Seeking
Seeking means randomly changing the playback position.
DeliPlayer supports three different techniques for players to implement seeking functionality.
The seeking techniques should be used mutually exclusive (meaning: implement none or one of
these techniques):

‚ Implement the SetPosition() function. Usually used by streaming players.
‚ Implement the StartSkip() and StopSkip() functions. Usually used by players that

mix themselves.
‚ Implement the replay state block. Usually used by mixing players.

SetPosition
The normal (and easiest) way to support seeking in streaming players is to implement the
SetPosition() function. In your implementation you call the seek function of the player’s
decoder with the position argument of SetPosition().
Implementing SetPosition() in mixing players or streaming players that do not have a seek
function can be a lot of hard work or be impossible.

StartSkip and StopSkip
DeliPlayer calls the players StartSkip() function to tell it that RenderFrame() should do as
little as possible and just increment the playing position until StopSkip() is called. Frames
rendered in between StartSkip() and StopSkip() calls are not used for playback.
DeliPlayer ‘skips’ through the song until the desired position is reached and then turns off skip
mode.

Replay State Block
The replay state block technique usually can be used only with thread-safe players whose
replay engine is well understood. It is the most dangerous of the three techniques because the
player developer must be very careful when implementing it. However, it is also the most
elegant solution, at least technically.
This technique requires the player to group together all variables that are modified during the
replay of a song in one structure, which is called the replay state block. The player then
exposes the size and address of its replay state block. During playback DeliPlayer creates
backup copies of the replay state block in certain intervals (about 10 seconds). When the
playing position is changed, DeliPlayer checks which backup copy is closest before the desired
position, copies the backup copy onto the players replay state block and calls the players
RenderFrame() function until the desired position is actually reached. While skipping to the
desired position DeliPlayer does not mix the frames.
The replay state block should not be larger than 30 kBytes, otherwise the player should use the
StartSkip()/StopSkip() technique or not implement seeking.

Data types used by the DeliAPI 2
The DeliAPI 2 uses only types used in the C calling convention. A few typedefs and structures
are defined to improve readability, type safety and later source level compatibility.

DeliTag
A DeliTag represents one entry in a tag array. Tag arrays are arrays of {id, value} pairs, where
the id describes the meaning of the next value. Tag arrays are terminated by a {0,0} entry.

DELITagId
The id in a DeliTag.

DELITagValue
The value in a DeliTag.

DELIBool
The bool data type. Allowed values are DELI_TRUE and DELI_FALSE.

DELIFile
A handle to a DeliAPI file.

DELIResult
The data type returned by DeliAPI 2 functions and plugin functions.

DELIVersion
The data type used for storing version information.

DeliNamedVariable
A DeliNamedVariable represents one entry in the array that describes the variables a plugin
exposed to DeliPlayer. (currently unused)

DeliNamedVariableValue
DeliNamedVariableValue is a union used to access the different data types a named variable
exposed by DeliAPI plugin can have (currently unused).

Player plugin interfaces
DeliPlayer player plugins contain implementations of the IDeliPluginContainer and
IDeliPluginPlayer interfaces.

Overview:
GetDeliPlayerPluginContainer Returns the container object. (Singleton)
IDeliSocketPlayer
Initialize Perform internal initialization
Information Return information about the plugin container
GetIID Return the IID of the plugin at the specified index position
CreateInstance Instantiates a plugin (Abstract Factory)
Cleanup Deinitialize the plugin container object.
IDeliPluginPlayer:
InitPlugin Initializes the player instance
Check Check if a file is in a supported format
InitModule Initializes the player to start playing a file
InitSong Set the sub-song index to play
StartPlay Start the playback
StartSkip Activate skip mode
RenderFrame Render one frame of audio/music data
SetPosition Jump to a different playback position
EndSkip Deactivate skip mode
EndPlay Stop playback
EndSong Deinitialize the song
EndModule Deinitialize from playback
EndPlugin Deinitialize the plugin
PluginInformation Provides information about the player, e.g. Name, Copyright
SetVariable Modify the specified plugin variable with the provided value
GetVariable Return the current value of the specified plugin variable
SetVariablesApplyMode <currently unused>
Notify <currently unused>
ConfigDialogOpen Open the configuration dialog for the player
ConfigDialogClose Close the configuration window
ConfigDialogApply Apply the settings from the config. dialog to the player
ConfigDialogRestore Reset config. dialog to the settings of the player
ConfigDefault Reset the settings of the player to their default values
ConfigApply Apply the settings of another instance
ConfigSave Save the configuration file
ConfigLoad Load the configuration file
ConfigChanged Return true if the configuration was changed
SongInformation Return information about a song
SampleInformation Returns information about a sample
InstrumentInformation Return information about an instrument
MessageInformation Return a song-message

GetDeliPlayerPluginContainer
GetDeliPlayerPluginContainer is the only function that is directly exposed through the DLL.
DeliPlayer calls it to retrieve a pointer to the container object of the plugin DLL (Singleton).

IDeliPluginContainer

Initialize
Performs internal initialization that is needed only once for all plugin instances like loading
additional libraries and pre-calculating static tables.
Returns:
DELIResult Success or failure
Parameters: none

Cleanup
Called only if the previous call to Initialize() succeeded.
Free all resources allocated in the last call to Initialize()
Returns: void
Parameters: none

Information
Return information about the plugin container. Currently this tag-array uses one single entry.
DATA_Container_NumPlugins providing the number of different plugin (player) classes the
container supports.
It is, however, recommended to implement only one plugin (player) class per container.
Returns:
DeliTag* Pointer to the tag-array containing information about the container
Parameters: none

GetIID
Called only if the previous call to Initialize() succeeded.
Returns the IID (Interface IDentifer) of the interface that the plugin (player) object at index
pluginindex implements.
It is recommended to implement only one (plugin) player class per DLL, so your
implementation of GetIID() would return IID_IDeliPluginPlayer for pluginindex==0.
Returns:
REFIID The IID
Parameters:
int pluginindex

CreateInstance
Create an instance of the player class at index pluginindex. The REFIID parameter explicitly
specifies the interface the plugin (player) object must implement. If the class at index
pluginindex does not implement the requested interface, CreateInstance() should return
DELI_RESULT_ERROR_FAILED.

Returns:
DELIResult Success or failure
Parameters:
int pluginindex The index of the requested plugin class
REFIID The IID of the requested object
PPVOID Pointer to a void pointer, into which your implementation copies

the pointer to the created instance.

IDeliPluginPlayer

InitPlugin
Called once per player instance.
Initialize the player instance. The pSocket parameter points to an object implementing the
IDeliPlayerSocker interface through which the player calls functions in DeliPlayer. It should
be stored for later use. The object remains valid until after EndPlugin() is called.
Returns:
DELIResult Success or failure
Parameters:
PVOID pSocket Pointer to the socket object.

EndPlugin
Called only if the previous call to InitPlugin() succeeded.
Deinitialize the player instance and free all resources allocated in and since the previous call to
InitPlugin().
Returns: void
Parameters: none

PluginInformation
Called only if the previous call to InitPlugin() succeeded.
Called to retrieve information about the player.
Returns:
DeliTag* The tag-array containing information about the plugin.

Parameters: none

SetVariable
Currently unused
Returns:
DELIResult

Parameters:
int varid
DeliNamedVariableValue Value

GetVariable
Currently unused
Returns:
DELIResult

Parameters:
int varid
DeliNamedVariableValue* pValue

SetVariablesApplyMode
Currently unused
Returns: void
Parameters:
int

Notify
Currently unused
Returns: void
Parameters:
unsigned int event
unsigned int data1
unsigned int data2

ConfigDialogOpen
Called only if the previous call to InitPlugin() succeeded.
Open the player’s configuration dialog. The window should not have a border and no drag-bar
because DeliPlayer will display the window inside its own configuration window.
Returns:
HWND The handle of the configuration window, or NULL in case of an error.
Parameters: none

ConfigDialogClose
Called only if the previous call to ConfigDialogOpen() succeeded.
Close the configuration dialog and free all resources allocated in ConfigDialogOpen()
Returns: void
Parameters: none

ConfigDialogApply
Called only if the previous call to InitPlugin() succeeded.
Apply the settings from the configuration dialog to the player.
Returns: void
Parameters: none

ConfigDialogRestore
Called only if the previous call to InitPlugin() succeeded.
Set the configuration dialog to the player’s current settings.
Returns: void
Parameters: none

ConfigDefault
Called only if the previous call to InitPlugin() succeeded.
Reset the player’s settings to the default values.
Returns: void
Parameters: none

ConfigApply
Called only if the previous call to InitPlugin() succeeded.
Apply the settings of another instance of the same player to this instance of the player. If your
player has a configuration dialog you also should implement the ConfigApply() function
otherwise only one instance of your player can be re-configured.
Returns: void
Parameters:
void* newcfg A pointer to the settings data of another instance of the same player

ConfigSave
Called only if the previous call to InitPlugin() succeeded.
Save the settings of the player. Players usually store their settings in a file in the current
directory (which DeliPlayer sets to the appropriate location). There are currently no rules on
how players should store their settings.
Returns:
DELIResult Success or failure
Parameters: none

ConfigLoad
Called only if the previous call to InitPlugin() succeeded.
Load the settings of the player.
Returns:
DELIResult Success or failure
Parameters: none

ConfigChanged
Called only if the previous call to InitPlugin() succeeded.
Called by DeliPlayer to check if the settings of the player have changed since the last call to
ConfigLoad() or ConfigSave().
Returns:
DELIBool DELI_TRUE if the settings have changed, DELI_FALSE otherwise.
Parameters: none

Check
Called by DeliPlayer for every file that is loaded. If your check code identifies the file and the
plugin can play it, return DELI_RESULT_OK. If the file was identified but is corrupt (e.g. too
short), return DELI_RESULT_ERROR_FORMATCORRUPT. If the file is an unsupported sub-format,
return DELI_RESULT_ERROR_FORMATNOTSTANDARD, otherwise return
DELI_RESULT_ERROR_FAILED.
Never store anything retrieved via the DELIFile argument (i.e. data pointers, size)

Returns:
DELIResult Valid Values: DELI_RESULT_OK

DELI_RESULT_ERROR_FAILED
DELI_RESULT_ERROR_FORMATNOTSTANDARD
DELI_RESULT_ERROR_FORMATCORRUPT

Parameters:
DELIFile The file to check

InitModule
Called only if the previous call to Check()succeeded.
Initializes the plugin/provided data as needed to start playback. The primaryfile remains
valid until after EndModule()or until it is explicitly unloaded by the player. The content of the
primaryfile (retrieved with FileGetData()) can be modified by the player.
Returns:
DELIResult Valid Values: DELI_RESULT_OK

DELI_RESULT_ERROR_FAILED
DELI_RESULT_ERROR_FORMATNOTSTANDARD
DELI_RESULT_ERROR_FORMATCORRUPT

Parameters:
DELIFile primaryfile The file to play

EndModule
Called only if the previous call to InitModule() succeeded.
Eject the file and reset the replay engine. The player should free all resources allocated in and
since the previous InitModule() and InitSong() calls.
Returns: void
Parameters: none

InitSong
Called only if the previous call to InitModule() succeeded.
Initializes the replay engine to play the provided song index.
Returns:
DELIResult Success or failure
Parameters:
int songindex The index of the sub-song to play

EndSong
Called only if the previous call to InitSong() succeeded.
Deinitialize the engine from playing a sub-song. The player should free all resources allocated
in and since the previous InitSong() call.
Returns: void
Parameters: none

StartPlay
Called only if the previous call to InitSong() succeeded .

Start playback. This method is usually unused, it however is is required to implement players
that require their own thread or access/require (asynchronous) devices for playback (ie.:
MIDI,CDDA).
Returns:
DELIResult Success or failure
Parameters: none

StopPlay
Called only if the previous call to StartPlay() succeeded.
The player should free all resources allocated in and since the previous StartPlay() call.
Returns: void
Parameters: none

StartSkip
Called only if the previous call to StartPlay() succeeded.
Switch the replay engine to skip mode. The functions should be implemented in players that do
all mixing themselves. When in skip mode, the player’s RenderFrame() function should do as
little as necessary to proceed from one frame to the next frame and should not generate any
output data.
Returns:
DELIResult Success or failure
Parameters: none

StopSkip
Called only if the previous call to StartSkip() succeeded.
Switch off skip mode.
Returns: void
Parameters: none

RenderFrame
Called only if all previous calls to the player’s Init functions succeeded.
Render one frame of audio/music data. A ‘frame’ usually covers between 1/100 to 1/10 second.
It should never exceed 2 seconds.
Returns:
DELIResult Success or failure
Parameters: none

SetPosition
Called only if all previous calls to the player’s Init functions succeeded.
Set the playback position dPosition is a floating point value containing the desired playback
position in seconds, with at least millisecond precision.
Returns:
DELIResult Success or failure
Parameters:
double dPosition The time position (in seconds) to jump to

SongInformation
Called only if the previous call to InitModule() succeeded.
Return a tag-array containing information about a specific sub-song of the currently loaded
module. The songindex argument specifies the sub-song for which information is requested.
An index of -1 is used to get module global (sub-song unspecific) information. Players/formats
that do not support sub-songs (like most streaming formats) should return a tag-array only for
songindex arguments -1 and/or 0.
Players should return as much information as possible, so don’t be lazy in your implementation.
Returns:
DeliTag* Pointer to a tag-array, or NULL in case of an error.
Parameters:
int songindex The index of the song for which information is requested

InstrumentInformation
Called only if the previous call to InitModule() succeeded.
Return a tag-array containing information about am instrument of a specific sub-song of the
currently loaded module. See also SongInformation() for an explanation of the songindex
argument. DeliPlayer will call this function with incrementing instrumentindex argument
until it returns NULL to indicate that the requested instrument does not exist.
Returns:
DeliTag* Pointer to a tag-array, or NULL in case of an error.
Parameters:
int songindex The index of the song for which information is requested
int instrumentindex The index of the instrument for which information is requested

SampleInformation
Called only if the previous call to InitModule() succeeded.
Return a tag-array containing information about a sample of a specific sub-song of the currently
loaded module. See also SongInformation() for an explanation of the songindex argument.
DeliPlayer will call this function with incrementing sampleindex argument until it returns
NULL to indicate that the requested sample does not exist.
Returns:
DeliTag* Pointer to a tag-array, or NULL in case of an error.
Parameters:
int songindex The index of the song for which information is requested
int sampleindex The index of the sample for which information is requested

MessageInformation
Called only if the previous call to InitModule() succeeded.
Return a tag-array containing the message. See also SongInformation() for an explanation of
the songindex argument. DeliPlayer will call this function with incrementing messageindex
argument until it returns NULL to indicate that the requested message does not exist.
Returns:
DeliTag* Pointer to a tag-array, or NULL in case of an error.
Parameters:
int songindex The index of the song for which information is requested

int messageindex The index of the message for which information is requested

FormatInformation
Called by DeliPlayer to retrieve information about the formats supported by this player.
DeliPlayer will call this function with incrementing formatindex argument until it returns
NULL to indicate that the requested format does not exist. If a player supports more than one
format (with the same replay engine) then it should return one format tag array for each (sub)
format supported.
Returns:
DeliTag* Pointer to a tag-array, or NULL in case of an error.
Parameters:
int formatindex The index of the song for which information is requested

FileExtensionInformation
Called by DeliPlayer to retrieve information about the file extensions supported by this player.
DeliPlayer will call this function with incrementing extindex argument until it returns NULL
to indicate that the requested file extension does not exist.
DeliPlayer will offer the user to register the file extensions the player exposes. You should be
careful not to expose file extensions (although belonging to the format your player supports)
that are known to be used by widely spread applications so users can not accidentally disable
the click to launch behavior they are used to/expect.
Returns:
DeliTag* Pointer to a tag-array, or NULL in case of an error.
Parameters:
int extindex The index of the song for which information is requested

 IDeliSocketPlayer interface
The IDeliSocketPlayer interface describes the functions DeliPlayer exposes to its player
plugins. Players access them through the socket object provided by DeliPlayer in the call to the
player’s InitPlugin() function.

Overview:
InitReplay Initialize the replay engine
InitChannel Initialize a specific channel
SetStateData Set the pointer to the players replay state block
GetStateData Retrieve the replay state block set earlier
SetConfigData Set the pointer to the player configuration data
GetConfigData Retrieve the player configuration data pointer set earlier
GetOutputFrequency Retrieve the current output frequency
ReplaySetSpeed Change the replay speed
ReplayNotifySongEnd Notify the core that the end of the song was reached
ReplaySetSample Start playing a sample on a channel
ReplayStopSample Stop the currently playing sample on the channel
ReplaySetRepeat Initializes a looped sample on the channel.
ReplayFinishRepeat Stops playing the loop part
ReplaySetVolume Set the volume on a channel
ReplaySetPan Change the panning on the channel
ReplaySetFrequency Set/change the sample frequency on the channel
ReplayInvertPlayingDirection Invert the playing direction of the loop part
FileLoad Completely load a file into memory
FileSeek Seek to a new position in a file
FileRead Partially read the content of a file
FileTell Retrieve the current absolute position in a file
FileGet Retrieve a DELIHandle
FileAlloc Create an in-memory ‘file’
FileUnload Close a file and free its memory
FileGetData Retrieve the files content
FileGetName Retrieve the name and path of the file

InitReplay
Call InitReplay in your implementation of InitModule() or InitSong(). It initializes the replay
and mixer engines in DeliPlayer.
Returns:
DELIResult, Indicates success or failure
Parameters:
unsigned int nChannels The number of channels used by the loaded song
int maxFrequency The maximum frequency
int maxVolume The maximum volume
int maxPanning The maximum panning
int periodBase See here
int timerBase The initial speed, see here
int timerSpeed The initial speed, see here
unsigned int flags

InitChannel
Call InitChannel() to set a channel to a default state. This function should be called in
InitModule() or InitSong().
Returns: void
Parameters:
unsigned int iChannel The index of the channel that should be initialized
int numchannels The number of channels (mono/stereo) Valid values: 1, 2
int resolution The sample resolution.

Valid values: 0 (float sample), 1 – 16 (integer sample)
int frequency The initial replay sample rate
int volume The initial volume
int horizpan The initial horizontal (left/right) panning
int depthpan The initial depth (front/back) panning

SetStateData
Call SetStateData() to set the replay state block pointer. If your player supports the replay state
block feature, you should call SetStateData() in your implementation of the InitPlayer()
function. Usually used only by mixing players.
Returns: void
Parameters:
void* statedata The pointer to the replay state block of the player plugin

GetStateData
Retrieve the pointer to the replay state block your player set earlier.
Returns:
void* The pointer to your player’s replay state block.
Parameters: none

SetConfigData
Call SetConfigData() to set the pointer to your players internal configuration structure.
DeliPlayer handles this pointer without knowing anything about the structure/implementation
of the player’s configuration.
If your player does not have a configuration, SetConfigData() should not be called. If your
player has a configuration window/structure, SetConfigData() should be called otherwise only
one instance of your player can be re-configured with its config dialog. This is necessary
because DeliPlayer works with at least two instances of every player plugin. To avoid forcing
the user to re-configure each instance of the plugin, DeliPlayer calls the ConfigApply()
function of every instance with the pointer to the configuration structure of the one instance
whose dialog was actually changed by the user, so these instances can also apply the modified
configuration.

Returns: void
Parameters:
void* configdata The pointer to the config data of the player plugin

GetConfigData
Retrieve the pointer to the configuration structure your player set earlier.
Returns:
void* The pointer to your player’s replay state block.
Parameters: none

GetOutputFrequency
Retrieve the current output sample rate. If your player requires the output sample rate you
should call GetOutputFrequency in your implementation of InitModule() or InitSong().
The output sample rate is guaranteed to be constant between the calls to the player’s
InitModule() and EndModule() functions. Usually used only by players that do all mixing
themselves.
Returns:
int The output sample rate (frequency).
Parameters: none

SetTotalFileSize
Call SetTotalFileSize() after your player has loaded all its secondary files. The total file size is
not used by DeliPlayer, it is an informational value that can be displayed in the user interface.
If your player uses DeliPlayer’s File API to load secondary file, you do not need call
SetTotalFileSize(), you can however call it to override the internally calculated value.
Returns: void
Parameters:
double nBytes The total size (in bytes) of all files belonging to the currently

loaded song. The double type is used to allow setting values
greater than (2^32)-1

SetTotalRealSize
Call SetTotalRealSize() after your player has loaded all its secondary files. The total real size is
not used by DeliPlayer, it is an informational value that can be displayed in the user interface.
If your player uses DeliPlayer’s File API to load secondary file, you do not need call
SetTotalRealSize() unless your player further decompresses the files belonging to the currently
playing song. You can call it to override the internally calculated value.
Returns: void
Parameters:
double nBytes The total size (in bytes) of all decompressed files belonging to

the currently loaded song. The double type is used to allow
setting values greater than (2^32)-1

ReplayInformationChanged
Call ReplayInformationChanged() if a info value changes while playing the song. This function
is usually used only by streaming players to broadcast a changed bitrate for variable bitrate
streams.
Returns: void
Parameters:
int eWhat Specifies which value has changed
unsigned int value The new value

ReplaySetSpeed
Call ReplaySetSpeed to change the replay speed during replay for mixing players. Do not call
this function in streaming players. ReplaySetSpeed() actually increases/decreases the size of
a sample frame. Using an argument of zero is not allowed.
Returns: void
Parameters:
int speed The new timerspeed value. Must not be 0.

See also InitReplay.

ReplayNotifySongEnd
Call ReplayNotifySongEnd() from within your implementation of RenderFrame() when the
player reaches the end of the song while processing the frame.
Returns: void
Parameters:
int songendflags The location of the songend.

Valid values: 0, DELI_SONGEND_ATENDOFFRAME

ReplaySetSample
Call ReplaySetSample to start playing the one-shot part of an instrument on a channel. Used
only by mixing players. Streaming player only use ReplaySetRepeat().
Returns: void
Parameters:
int iChannel The index of the channel on which to play the instrument
int numChannels The number of channels used (stereo/mono). Valid values: 1,2
int resolution The sample resolution. Valid values: 0,1-16

void* pSamples The pointer to the start of the sample array
unsigned int nSamples The number of samples in the sample array (one stereo sample

counts as one sample)

ReplayStopSample
Call ReplayStopSample() to stop playing the sample (one-shot as well as repeat part). This
function immediately silences the channel.
Returns: void
Parameters:
int iChannel The index of the channel

ReplaySetRepeat
Returns: void
Parameters:
int iChannel The index of the channel
void* pSamples The pointer to the sample array.
unsigned int nSamples The number of samples in the sample buffer (one stereo sample

counts as one sample)
int looptype The loop type. Valid values: DELI_LOOPTYPE_Forward,

DELI_LOOPTYPE_Backward, DELI_LOOPTYPE_PingPong

ReplayFinishRepeat
Call ReplayFinishRepeat() to stop playing the loop-shot part the next time it would be repeated.
Returns: void
Parameters:
int iChannel The index of the channel

ReplaySetVolume
Call ReplaySetVolume() to set the volume of a channel.
Returns: void
Parameters:
int iChannel The index of the channel
int volume The new volume

ReplaySetPan
Call ReplaySetPan() to set the horizontal (left/right) and depth (front/back) pan position of a
channel. Currently, depth panning can only be used to play on the surround speaker by setting
horizpan to 0 and depthpan to the maxpanning value specified in the InitReplay() call.
Returns: void
Parameters:
int iChannel The index of the channel
int horizpan The new horizontal (left/right) pan position
int depthpan The new depth pan (front/back) position

ReplaySetFrequency
Call ReplaySetFrequency() to change the sample rate of a channel.

Returns: void
Parameters:
int iChannel The index of the channel
int frequency The new sample rate (i.e. period or frequency)

ReplayInvertPlayingDirection
Call ReplayInvertPlayingDirection() to change playing direction of the loop-part of a sample
from forward to backward or vice versa.
Returns: void
Parameters:
int iChannel The index of the channel

FileLoad
Call FileLoad() to load a file into memory. If the file does not contain an absolute path,
DeliPlayer tries to load it from the same directory or archive in which the primary file is
located. If the file is compressed with a known compressor, it will automatically be
decompressed. To access the content of the file call FileGetData().
Returns:
DELIFile A handle to the loaded file, or NULL in case of an error.

Parameters:
const char* filename The name of the file to load

FileSeek
Call FileSeek() to seek to a new position in a file. Usually used only by streaming players.
Returns:
double The new absolute position in the file.
Parameters:
double newposition The position to seek to
int disposition The seek disposition. Valid values: DELI_SEEKORIGIN_BEGIN,

DELI_SEEKORIGIN_CURRENT, DELI_SEEKORIGIN_END

FileRead
Call FileRead() to partially read a file. Used only by streaming players.
Note: Due to the absence of a FileOpen() function, you currently can use FileRead() only with
the primary file.
Returns:
DELIResult Success or failure.
Parameters:
DELIFile file The file to read from

FileTell
Call FileTell() to retrieve the current absolute position of a DELIFile. Usually used only by
streaming players.
Returns:
double The current absolute position in the file.
Parameters:

DELIFile file The file of which to tell the position

FileGet
Call FileGet() to the DELIFile handle of the file at a specific index position. Index 0 is the
primary file.
Returns:
DELIFile The handle to the file, or NULL in case of an error.

Parameters:
int index The index of the file

FileAlloc
Call FileAlloc() to create a new ‘file’ in memory. This mechanism is usually used by players to
convert files in memory (decompress, re-structure). Call FileUnload() to free the file when the
player no longer needs it. Note that DeliPlayer automatically frees all DELIFiles after the
EndModule() function of the player has been called.
Returns:
DELIFile The handle to the new in-memory file.

Parameters:
int buffersize The index of the file
const char* filename The name of the file. Not used by DeliPlayer.
int wallsize The size of a ‘no mans land’ area (wall) behind the file. Using a

wall can be useful e.g. for decompressing files when the
decompressor temporarily requires additional space in the
destination buffer, or for security when dealing with too short
files.

FileUnload
Call FileUnload() to free a DELIFile. Note that you can also free the primary file with this
function (for example after converting/decompressing it in InitModule() or InitSong().
Returns: void
Parameters:
DELIFile file The file to free

FileGetData
Call FileGetData () to retrieve the contents of a DELIFile.
Returns:
DELIResult Success or failure
Parameters:
DELIFile file The file to free
void** pData Pointer to pointer (!) into which DeliPlayer copies the pointer

to the file data array.
unsigned int* pSize Pointer to an unsigned int (!) into which DeliPlayer copies the

size in bytes of the file data array.

FileGetName
Call FileGetName() to retrieve the filename of a DELIFile.

Returns:
DELIResult Success or failure.
Parameters:
DELIFile file The file to free
char* namebuffer A pointer to a char-array into which DeliPlayer copies the file

name.
int namebufferlen The size (in chars) of the char-array.

Appendix

Terminology
The following terminology explains how the terms are used in the DeliAPI 2 documentation.
Not all definitions are globally valid.

Module
A set of files which belong together. To use a module, all its files must be available. Most of
the time one single file builds a module, like .mp3, .mod, .it. Examples of formats with
modules that consist of at least two files are TFMX and SoundTracker-Songs.

Sub-song
Modules usually contain one song (e.g. MP3s). However, certain formats (e.g. TFMX) support
several songs per module. If it is important to address a specific song in a module, it is called
‘sub-song’. Most of the time it is followed by the index of the sub-song.
Example: Player ‘xyz’ plays sub-song 3 of module ‘test sound’.

One-shot par t
The part of a sample based instrument that is played only once.

Loop par t
The part of a sample based instrument that is repeated.

Replay state block
See the Replay State Block description.

Mixing
Mixing is the operation that combines two or more channels into one channel.

Streaming player
A streaming player is a player that does not use DeliPlayer’s mixing functionality.
Examples: WAV-player, MP3-player, OGG Vorbis–player.
Streaming players should set the timerbase and timerspeed arguments in their call to
InitReplay() to 0.

Tag-array
An array of {tag,value} pairs. Used in DeliPlayer for exchanging information between plugins
and the core. See also DeliTag.

Inter face
The definition of a set of functions to be implemented and later instantiated in one object. (in
C++: a class without any members containing only virtual methods that are pure).

Class
The implementation of an interface.

Object
The instance of a class.

License
You are free to use the source codes included in the DeliAPI 2 package for creating player
plugins for DeliPlayer. You may not redistribute modified versions of the DeliAPI 2 package.
DeliAPI 2 documentation and include files are copyrighted © 1997-2004 by Florian Vorberger
and Peter Kunath.

‚ The Player_Shor ten project and its files are released under the GNU Public License
(GPL).

‚ The Player_MixingDemo project and its files are copyrighted © 2004 by Florian
Vorberger and are provided for demonstration purposes.

THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS. YOU ASSUME THE ENTIRE
COST OF ANY DAMAGE RESULTING FROM THE INFORMATION CONTAINED IN
OR PRODUCED BY THIS SOFTWARE PRODUCT. YOU ASSUME ALL
RESPONSIBILITIES FOR SELECTION OF THIS SOFTWARE PRODUCT TO ACHIEVE
YOUR INTENDED RESULTS, AND FOR THE INSTALLATION OF, USE OF, AND
RESULTS OBTAINED FROM IT. TO THE MAXIMUM EXTENT PERMITTED BY
APPLICABLE LAW, THE SELLER AND OTHERS WHO MAY DISTRIBUTE THIS
SOFTWARE PRODUCT DISCLAIM ALL WARRANTIES, EITHER EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMI TED TO IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, CONFORMANCE
WITH DESCRIPTION, AND NON-INFRINGEMENT, WITH RESPECT TO THIS
SOFTWARE PRODUCT.

Note that a separate license applies to open source software included in the DeliAPI package.

Diagrams

Plugin DLL

Plugin Container

Player A

Player B

…
(containers can contain one or many player plugins)

Instance 1 Instance 2 Instance 3 ...

Instance 1 Instance 2 Instance 3 ...

Diagram 1: Basic object structure

+Check() : DELIResult
+InitModule() : DELIResult
+InitSong() : DELIResult
+StartPlay() : DELIResult
+RenderFrame() : DELIResult
+SetPosition() : DELIResult
+StopPlay()
+EndSong()
+EndModule()
+SongInformation() : DELITag
+InstrumentInformation() : DELITag
+SampleInformation() : DELITag
+FormatInformation() : DELITag
+FileExtensionInformation() : DELITag

«interface»
IDeliPlayerPlugin

+InitReplay() : DELIResult
+InitChannel()
+SetStateData()
+GetStateData()
+SetConfigData()
+GetConfigData()
+GetOutputFrequency() : int
+ReplaySetSpeed()
+ReplayNotifySongEnd()
+ReplaySetSample()
+ReplayStopSample()
+ReplaySetRepeat()
+ReplayFinishRepeat()
+ReplaySetVolume()
+ReplaySetPan()
+ReplaySetFrequency()
+ReplayInvertPlayingDirection()
+FileLoad() : DELIFile
+FileSeek() : double
+FileRead() : DELIResult
+FileTell() : double
+FileGet() : DELIFile
+FileAlloc() : DELIFile
+FileUnload()
+FileGetData() : DELIResult
+FileGetName() : DELIResult

«interface»
IDeliSocketPlayer

+Initialize() : DELIResult
+Information() : DELITag
+GetIID() : sequence(idl)
+CreateInstance() : DELIResult
+Cleanup()

«interface»
IDeliPluginContainer

+SetVariable() : DELIResult
+GetVariable() : DELIResult
+GetVariableBuffer() : DELIResult
+SetVariableBuffer() : DELIResult
+NotifyVariableChanged()

«interface»
IDeliSocket

«datatype»
DELIResult

«datatype»
DELIFile

«datatype»
DELITag

+InitPlugin() : DELIResult
+EndPlugin()
+PluginInformation() : DELITag
+ConfigInformation() : DELITag
+SetVariable() : DELIResult
+GetVariable() : DELIResult
+SetVariablesApplyMode()
+Notify()
+ConfigDialogOpen() : object(idl)
+ConfigDialogClose()
+ConfigDialogApply()
+ConfigDialogRestore()
+ConfigDefault()
+ConfigApply()
+ConfigSave() : DELIResult
+ConfigLoad() : DELIResult
+ConfigChanged() : DELIBool

«interface»
IDeliPlugin

«datatype»
DELIBool

+QueryInterface()
+AddRef()
+Release()

«interface»
IUnknown

Diagram 2: DeliAPI 2 inter face structure

	Introduction
	Contents of the DeliAPI 2 package

	Basics
	Architecture
	Special features of the DeliAPI 2

	How to develop a player plugin
	Basic steps for implementing a player plugin
	Implementing the replay code
	Allocating and initializing channels
	Playing samples
	Loading secondary files

	Seeking
	SetPosition
	StartSkip and StopSkip
	Replay State Block

	Data types used by the DeliAPI 2
	DeliTag
	DELITagId
	DELITagValue
	DELIBool
	DELIFile
	DELIResult
	DELIVersion
	DeliNamedVariable
	DeliNamedVariableValue

	Player plugin interfaces
	GetDeliPlayerPluginContainer

	IDeliPluginContainer
	Initialize
	Cleanup
	Information
	GetIID
	CreateInstance

	IDeliPluginPlayer
	InitPlugin
	EndPlugin
	PluginInformation
	SetVariable
	GetVariable
	SetVariablesApplyMode
	Notify
	ConfigDialogOpen
	ConfigDialogClose
	ConfigDialogApply
	ConfigDialogRestore
	ConfigDefault
	ConfigApply
	ConfigSave
	ConfigLoad
	ConfigChanged
	Check
	InitModule
	EndModule
	InitSong
	EndSong
	StartPlay
	StopPlay
	StartSkip
	StopSkip
	RenderFrame
	SetPosition
	SongInformation
	InstrumentInformation
	SampleInformation
	MessageInformation
	FormatInformation
	FileExtensionInformation

	IDeliSocketPlayer interface
	InitReplay
	InitChannel
	SetStateData
	GetStateData
	SetConfigData
	GetConfigData
	GetOutputFrequency
	SetTotalFileSize
	SetTotalRealSize
	ReplayInformationChanged
	ReplaySetSpeed
	ReplayNotifySongEnd
	ReplaySetSample
	ReplayStopSample
	ReplaySetRepeat
	ReplayFinishRepeat
	ReplaySetVolume
	ReplaySetPan
	ReplaySetFrequency
	ReplayInvertPlayingDirection
	FileLoad
	FileSeek
	FileRead
	FileTell
	FileGet
	FileAlloc
	FileUnload
	FileGetData
	FileGetName

	Appendix
	Terminology
	License

