Del |A PI 2 Documentation Version 1.0

The player plugin API for Deligyer Version 2.50 and higher

DeliAPI 2 © 1997-2004 by Florian Vorberger and Peter Kunath
DeliPlayer © 1997-2004 by Florian Vorberger and Peter Kunath

1Yo T0 [UTo3(T0] o IFUE TR 5

Contents of the DeliAP] 2 PACKAGEuuviiiiiiiii e 5
B F T (o1 TP 5
(o 011 (= Tox (SR UPPPPPTUPPPPRPI 6
Special features of the DEIIAPT 2.......euueieiiii e e s 6
How to develop a player PIUGIN ... e 7
Basic steps for implementing a player pIUgQinuveuiiiiiiie e e 7
Implementing the replay COUE ... s 10
Allocating and initializing ChaNNEISuuuiiiiiii e 10
Playing SAMPIESo 11.....
(o F=To [T o JST=ToTo] g o F=T 2R 11 (2T 7P URUSUPT 12
Y2121 (] o PR 13
1= 0] 110 o RSO PPPPPPRP 13
StartSKIiP and STOPSKIP....uuueeiiiiiiiiee e a e e e e e 13
REPIAY STALE BIOCKuvuiiiiiei it et e e e e e e e e e e e e e e e et e s s e e e e e e e eaeeeeeeeneeennnnnns 13
Data types used DY the DEIIAPT 2 ... e 14
3 7= 8 1= Vo 14
[= 1=V | o U PRSP 14
] I 1= Vo - 1L =PSRN 14
3 =] = To | P PPPRREPPPRRRR 14
3 PP TP TP PTTPTPPPI 14
DELIRESUIL. ...ttt e e e e e e e e e e e e e s s e e sttt e s e e et e e eeeeeeeaaeaaaaaeeseasaannnnnnes 14
[I YT €] o] o PP PPPPRPPP 14
DeliNamMedVariabIe 14
DeliNamedVariableValUeoooo i 14
Player plugin INTEITACESuu e e e e e e e 15.....
GetDeliPlayerPIugiNCONTAINETooiiieeeeeeie e e e e e e e e e et s s e e e e e e eeaeeaaeeeeernnnnes 16
1= 1 (U o1 (@] o] = 1] = RSSO 16
INIHALIZE ..t 16
(@41 T= T 11] o PR PUPPUPPRT 16
11011 0 P11 o] o H PP PPPTPPPPPPRPR 16...
(7= 11 1 PP PEPUUUPURPR 16
(O (ST YT 10151 2= [o PR 16
IDEIIPIUGINPIAYET ...ttt e e e e e e e et e e e e e e e et e e bt e e e e e e e e e eaeaeeeeeenesnne 17
L[T 1 SR 17
[L0 1 T[] o PO PPPPTRPPTPRRP 17
PIUGININTOIMALION ...ceeeeeeeiiieiece e e e e e e e e e et e et e e e et e e e e e e e eeeaeaeeeeeeennnes 17
SEIVANADIE e a e e e e e e e aaaaaraa 17
GEEVANIADIE ... 17
SetVariableSAPPIYMOUE ... 18
NN 113725 18
(@fe] g1ilo] BIr=1{eTe @] o] o LRSS PPPPPPRUTPRRTRT 18
CONTIGDIAIOGCIOSE ...ttt a e e e e e 18
(@70 a1 ile] BIr=1{oTe VAY o] o] V2RSSR 18
CONTIGDIAIOGRESIONEcceiiiiiiee et e e e et e e e e e e e e eeas 18

CoNfIgDEIAUIL ... e e 19.....

O] a0 S T= 1= S PPPUSSRR 19
(0] o1 {{o | o Y- To F PR RTPTPPRTPTRR 19
(@] oo [5 = To =T o SRS 19
(O 01T o] PSSP PPPPPTPPRRRRP 19
INIEMOAUIE ...t e e e e e e e e e e e e e e e e e e s s s ammnnes 20..
[T aT0 1Y o To (1] =TT 20
1L o o 20
[aT0 IS0 T RO PPPPPRPPUPPRT 20
0] 1= L1 £ - 20
1 0] o]] 1=V URPPPPPPTPPRTRTT 21
0] = 11 15 (| o SRR 21.
(0] 6151 (] o PO UUPRPPPPPRRPTRTTN 21
RENUEIFTAME ... bbbt e et e e e e e e e e e e e e e e aeaans 21
Y= 0 LS 1110 o PO UUPPPPPPTPPPTRPP 21
Yo {0 11 {0 ¢ 1= 11 o] o PSP 22
INSTrUMENTINTOIMALION.ot e e e e e e e e e e e e e e e e b b s 22
F= 0] 0] (=1 Y0 1 o F=1 1o] o [PPSR 2 2
MESSAGEINTOMMIATION ...ttt e e e e e et e et e et bbb a e e e e e e e e e e eaeeeeeeeessennnnnns 22
FOrmatinfOrmMationoooiiiiiii et 3o 2
FIleEXteNSIONINTOIMALION.oiiiiiiiiiiiie e e e e e e as 23
IDeliSocketPlayer INtErfacCe............ceveiiiiiiiiiie e e e e e e e e e e 24.........
TR =] o] F= | PSSR 25
]I (@4 0=] o= PSP PP PR 25
SOESTALEDALA ... ettt et e e e e e e e e e e rn e e e e enra e aaaane 25
LT A0 = 1] I = = PP 25
1= (000101 1T0| D= | v N PP 26.......
(€T (@fo] 10| - - VPP 26.......
GEIOULPULFTEOUENCY ...ttt ettt e e et e e e e e et e et e e e e eeetba e e e e s ennsanaaeaeenne 26
SEITOLAIFIIESIZE ... e e e e e e e e e 26.......
SEetTOtAIREAISIZE ... 27........
ReplaylnformatioNnCRaNngedcooi it e e e e e e e e e e eeeeenannne 27
REPIAYSEISPEEA. ... e 27,
ReplayNOtfYSONGENG.......coiiiiii e e e e e e e e e e e e e e eeeeeeaesrnnnnas 27
ReEPIAYSEISAMPIE. ...ttt e e e e e e e e e aaeaeeaae 27
YT 0] Eo YA (0] €IS T= 11 4] o] = PSS 28
REPIAYSEIREPEALo 28..........
RepPlayFiNISNREPEAL..........ceeeeieieiicie i e e e e e e e e e et aaaeaaaaaaees 28
REPIAYSEIVOIUME ...t e e e e e e e eees 8. 2
T 0] Fo YA T =] U = o 1 28
REPIAYSEIFIEQUENCYttt e e e e e e e e e e et e ettt bbb e e e e e e e aeaaeaees 28
ReplaylnvertPlayingDir€CONcciiiiei e e e e e e e e e e aaeeeees 29
1 (=7 o = Lo [P SUUPPPPPPPRPPPP 29
1= SO 29..
(1= Y- To [P PPPPPPPPPPPR 29
1= I | U 29

S| (S] =] TR 30

FileAlloc

... 30
[T =X L] (o = Lo 30...
LT CT=T 1 D L= | = TR 30
(T[T =Y 1\ = T = 30

Y o] 0 1] T [RS UUPPPPPPPTPPPPPPRRT 32

1= 1011 T][0T |V 32.
License

Introduction

Creating software plugins can be easy and rewvg if the API of the application actually
helps the plugin developer to build the necessary bridging code.
We think the DeliPlayer APl achieves this thgh its straight fonard design, the included
helper classes, the plugin si&ln source, the included sourmle of two players and this
documentation.
If, after reading the documentation, you have goastbn how to use specific features of the
API, if you are not sure on how to support a #peteature of the @yer you are adapting or
have suggestions for future versions of thd, Alien please join the development forum on the
DeliPlayer web site:

http://www.deliplayer.com/flum2/phpBB2/viewforum.php?f=9
You can also inquire there if someone elsalisady working on a replay that you plan to
adapt.

Contents of the DeliAPI 2 package
The DeliAPI 2 package is a ZIP archiwgh the following directory structure:

Del i APl 2 package docunent ati on } } del i api 2. pdf ‘

i ncl udes } ideliapi.h ‘

The helper class and its

r N .
sources (partial) implementation.

b el e

—' Pl ayer _Shorten

Source code of a streaming
player plugin

Source code of a mixing
player plugin

Skeleton source-codes for
—{ skel eton player sources quickly building new player
plugins

The DeliAPI 2 does not contain pquire a static link librarg.lib). The API is described
completely in the del i api . h header file. The helper class is included as source code.

T

—' Pl ayer _M xi ngDenp

Basics

The DeliAPI basically consist of three interfades! i Pl ugi nSocket Pl ayer ,

| Del i Pl ugi nPl ayer andl Del i Pl ugi nCont ai ner . Player plugins implement the

| Del i Pl ugi nPl ayer andl Del i Pl ugi nCont ai ner interfaces. DeliPlayer provides an object
that implements theDel i Pl ugi nSocket Pl ayer interface to the eachuain to expose its API
functions.

Player plugin developers using the provided hefesses only need to implement a subset of
thel Del i Pl ugi nPl ayer interface.

http://www.deliplayer.com/forum2/phpBB2/viewforum.php?f=9

Architecture

Plugins are standard Window4.Ds (Dynamic Link Libraries)

One plugin DLL can contaione or more plugins.

Uses an object-oriented design

All API objects are COM objects. (see belauy the plugin developer is not affected
by this ‘issue’)

Special features of the DeliAPI 2

e Supports three methods for seeking in songs.
e Player plugins can use DeliPlayer’'s mixeniix channels, they do not need to contain
own mixing routines.

DeliPlayer plugins directly expose only one function through the DLL. This function

(Get Del i Pl ugi nCont ai ner) is called by DeliPlayer to retriexaepointer to the container object
of the plugin. The container object (Singletoohptains informationtzout the plugin DLL and
creates the plugin instances (Abstract Factory).

DeliPlayer then retrieves the types of thegnhs this containemupports. A container can

contain one to several players. Howevert grongly recommended to create one plugin DLL
per player.

DeliPlayer then creates several (at least twoaisds per player class. Plugin developers must
create thread-safe (reentrant) code becBes®layer uses the instances simultaneously.
Should it be impossible to writetlaread-safe player because tlee& you use is not thread-safe
and too complex to make thread-safe, then you can let DeliPlayer know that the plugin DLL
contains non thread-safe code. In this case Dsld@?lwill still createseveral instances of the
player but will not use them simultaneously.a@sonsequence, DeliPlayer will not be able to
cross-fade two tunes of this format, nor isassible to pre-load a song in the format while
another song is already playing.

Obviously it is highly recommended to write otihyead-safe players, primarily because it is
confusing for users why some formditehave differently than others.

Code that uses only one singlelggl/static variable not purelyuost (read only) is not thread-
safe. There is no such thing likeostly’ thread-safe. The resultdé not declaring your thread-
unsafe code as such range from erratay to being completely unstable.

The container object as well as the player aisjare COM (Component Object Model) objects.
This means they derive from thenknown interface and all COM programming rules apply to
them. The container and playeterfaces are defined in theel i api . h header file.
Included in the DeliAPI is a helper class thatngbetely hides the COM nature of DeliPlayer’s
API so you can focus on writirtge player code itself.
After a player object is instantiated, it re@s\a pointer to an odgt that implements the
| Del i Socket Pl ayer interface which contains all functiotizat DeliPlayer exposes to its
plugins. The socket contains functions to

e Extract data from DeliPlayer’s file handle€(Fi | e)

e Load secondary files

e Replay functions, including futions to use DeliPlayer’'s mixer

How to develop a player plugin

First of all, you don’t have to dewlith the ‘gory’ details of th DeliPlayer API. Included in the
DeliPlayer API is the C++ sour@®de of a helper class thitakes care of all COM related

tasks. The API also contains two example players that demonstrate how mixing and streaming
players work.

We highly recommend to always use the hetpp@ss from the DeliAPI package, because then
your plugin is much more likely to remain souteeel compatible with later versions of the
DeliAPI.

Using the supplied skeletoowrce as starting point for your player has the following
advantages:
1. the player will compile, link and be loadable in DeliPlayer from the beginning on
(provided the code you write is 0k)
2. the skeleton imposes no overhead to ymugin (neither in size nor CPU time)
3. the developer does not have to deal witeven be aware of COM programming rules
4. the skeleton contains comments that lyglp understand the purpose of each method
and its arguments
5. by following the skeleton’s TODO commerite developer is guided through the
implementation process

Basic steps for implementing a player plugin
This section describes the basic steps netxleckate a player plugin for DeliPlayer.

Microsoft Visual C++ 6.0 is used as developiemvironment because it is widely spread. If
you want to use another compiler/developrmeamntironment you can of course do that, but you
will have to figure out yourself if your compil#éDE contains a project wizard that creates
MFC application DLL projects and how to usdf you use Microsof¥isual C++ 7.x (.NET
2003) the steps are very similar.

Because we want the player to haveafiguration dialog (window) we use the MFC
(Microsoft Foundation Classes) framework.

a. Start by creating the project for the playargh and adding the sleton plugin files to
the project:

e Launch the development environment (e.g. Visual C++ 6.0).

e Open the ‘File’ menu and click ‘New’Jick on the ‘Projects’ tab in the opened
window and seledIFC AppWizard (DLL).

e Enter the project name (something like ‘DP_Player_XYZ’), modify the position
of the project as you see fit and pr&3K’. The default settings in the next
dialog are OK, so continue withititsh’ and acknowledge with ‘OK’.

e Open a file manager (e.g. Windows Eoqelr, Total Commander) and copy the
skeleton player files from the DeliAP&apkage to the directory of the project
you just created.

e In Visual C++ open the ‘Project’ menu, ditAdd to Project / Files’ and select
all skeleton source files (op and *.h) that you havepied into the project
directory in the previous step.

The project should now compile, link aalteady be loadable by DeliPlayer.

. Once the project is set up and contains tledestn player sources you have to fill in the
actual player code. The skeleton and thedredtass already implement all necessary
interfaces for the player plugin. You now haeensert your code into the correct
placeholders.
Insert/write the check codkat recognizes music files in the particular format the
player supports.check())

e Insert/write the initializon code that preparesettune/plugin for playback.

(I ni t Modul e() andl ni t Song() as well agEndMvodul e() andEndSong())
e Insert/write the actual replay codeefder Fr ame())

At this point the player plugin should-@hdy load and play files in the supported
format(s).

. Adjust theP! ugi nl nf or mat i on(), For mat | nf or mat i on() and

Fi | eExt ensi onl nf or mati on() implementations to provide DeliPlayer (and the user)
with information about the player plugitself (e.g. name, author, version and
copyright).

Adjust theSongl nf or mat i on(), I nst rument | nf or mat i on(), Sanpl el nf or mat i on()
andMessagel nf or mat i on() implementations to expose as much information as
possible about the currentlyaging tune (e.g. song name, instrument names, author)

. Decide which settings your player ne¢d®xpose to the user. You should expose as
few (none) settings as possible becauseatten hard to undetand the effects of
player settings unless you haagtually written the player.

Implement theconf i gLoad() , Confi gSave(), Confi gAppl y(), Confi gDef aul t s()
andcConf i gChanged() functions.

. Design the configuration dialagnd write the code to initialize the dialog controls and
retrieve their content.

e Add a dialog resource to the project via the migsert/Resource.

e The first thing you should do is right clichkto the dialog and open its Properties
window from the context menu. Go to tBglestab, set th&yle to ‘Child’, un-
check theTitle bar checkbox and select ‘None’ in tBerder combobox.

e Add all required controls to the dial¢do not forget to wefy/adjust the tab-
order (see menuayout/Tab Order)).

e Open theMFC ClassWizard, which should immediatglask if you want to
create a new class for the dialog,iethyou should do. Give the class an
explanative name likeConfi gDl g an exit with OK.

¢ In theMFC ClassWizard createMessage Maps andMember Variables (variable
bindings) as you see fit, and add the necgssade to initialize the controls and
retrieve their content.

e Implement theconf i gDi al ogOpen(), Confi gDi al ogd ose(),

Confi gDi al ogAppl y() andConfi gbi al ogRest ore() functions.

f. Debugging and testing. You should be esplgc@areful about th check routine and
sanity checks of thiéles you are loading.

e Ten fold check your check routine. Don't laugh, do it. DeliPlayer already
supports several hundred formats amomgsth are some formats that have
proven to possess qualities of a chimeranyiasers add directories with lots of
potential music files and rely on Deligk to pick out those files that are
actually supported. Your play will very likely comeacross some files that look
very much the files in your format but are actually something completely
different. Very small and very big filege also potential problems. To avoid
unpleasant surprises you should make yh@ck routine as strong as possible
and test it thoroughly.

Do not even think about relying on figxtensions (e.g. .mod) to identify a
certain format. Your player is guarantdectrash or behave very weird each
time a file is loaded thatccidentally has the extension you check for but is not
in the format you expect.

e The more popular the format your player supports is, the more likely it is that
you will have to deal with severely damages files, incomplete files and files
saved by slightly modified versions thie editor software. If in doubt, better
reject a file first instead of crashing later.

If your player does not need a configuration aligit is still a good idea toreate a project that
supports MFC so if you later decide to implent a configuration dialog you can do this
without having to create a ngwoject. Also, the MFC framewkprovides several useful types
like CStri ng, CLi st andCArr ay.

Implementing the replay code

Allocating and initializing channels

Before you can play sound using teml aySet Sanpl e() /Repl aySet Repeat () functions, you
have to call theni t Repl ay() function first. Besides allocaiy a given number of (virtual)
channels, this function does alsome other important things:

The number of channels depends on the fo(arad files) you want to play. If a format
supports stereo samples, it is recommendeadlaoate only one channel and to play
stereo samples on it insteafdsplitting a stereo sampieto two mono samples.
Themaxvol unme andmaxpanni ng parameters specify the maximum volume and
panning values the player use€®lume values higher than tihexvol une parameter
are clipped taraxvol une. Settingmaxpanni ng to zero disables variable panning
for this player. Both arguments helplPayer to compute the overall sound output
level of all channels properly.

Players can operate in either peradrequency mode. If you specifyp&r i odbase

of zero, the arguments of a ReplaySetFregqy@ call are treated as frequencies.

Otherwise, the sample playback réteHz) can be calculated as follows:
pl ayback _rate := period_base / setfrequency_argument

DeliPlayer distinguishes beégn mixing and streaminggylers. Mixing players are
players where the instruments (which usualbypt different frequecies) have to be
mixed to single output stream playing at é4100Hz. All tracker glyers fall into this
category. The speed at which teder Frane() routine of a playeis called can be
specified in two way$or mixing players:
1. if ti merbase iS not zero, thei mer speed parameter acts as a divider for the

ti mer base. The following formula can be used to compute the number of calls

which occur per second:
renderframe_rate := timer_base / tinmer_speed

2. if ti merbase is set to zero, the ner speed value specifies the ProTracker BPM
tempo at which the player is called

In either case, threpl aySet Speed() function can be used during playback to modify

the current playback speed.

If bothti mer base andti nmer speed are set to zero, a player operates in streaming
mode. This mode is used for formatsemh the player itself generates the output
samples in real-time or when the sampleslaaded from disk. The rate at which the
player is called is then determined bg tength and the frequency of the playing
samples. As a consequenat playing samples must have the same length and
frequency if several samples are @dysimultaneously in streaming mode.
Furthermore, it is recommended to split the dasypito chunks which have a length of
approximately 1/100 to 1/10 second.

Once you have allocated some channels, @égsmmended to initialize ela channel to valid
initial values by using theni t Channel () function. You can set thaitial channel number
(Mono/Stereo), resolution, frequency, voluare panning for an instrument playing on a
certain channel. The initial vaere overwritten by a subsequrepl aySet * () function calls.

Although it is recommended to allocate onlg thinimum number of channels needed for
playing a certain song or sampiles possible to allocate moohannels and to disable the
inactive channels. This can be done by settingithehannel s argument of ni t Channel ()

to zero. If a channel is disked, DeliPlayer ignores afepl aySet Sanpl e() and

Repl aySet Repeat () calls for this channel.

Playing samples
The DeliPlayer API splits samples into a one-shot @ad into a repeat pggoften also called

loop part of a sample). See for example thefihg sample which consists of a leading sine
part and a trailing rectangle part.

0 3 10 15 20 25 30 35 40

Let's say we want to play this sample withiPlayer. In the following, we use the sine part
(time index 0 - 19) as one-shand the square part (time ind2® - 39) as repeat part. Let us
further assume that the sample is located at afige#3456 in memory, is signed, mono and

has a resolution of 8 bits. Then the function call plays the sample on the output channel 3:
Repl aySet Sanpl e(3, 1, 8, 0x123456, 20);

Note that we have not set the loop parthaf sample yet. If we omit the following
ReplaySetRepeat() call, DeliPlaygays only the one-shot papecified above, then the

sample stops. To play the square part in a looped way, we make the following call:
Repl aySet Repeat (3, 1, 8, 0x123456+20, 20);

Because the loop part starts 20 bytes after tkesbot part, we add 20 to the base address of
the sample. The size of the loop is again 2Qysase 20 as repeanigth (all other sample
attributes like the channel number andrimsolution are assuméal be identical).

Some remarks about tiRepl aySet Sanpl e/Repl aySet Repeat functions:

e Mono and stereo samples are supported. Seuth®hannel s argument ta for mono
samples, for stereo samples set i.tth case of stereo samples, the sample data must
be interleaved, starting with the left chanfa. leftO, right0, leftl, rightl, and so on).
Samples which haverainChannel s argument of zero are not mixed.

e The sample data must be signed (if the samples of the module/sound format you're
planning play are unsigned, you have ¢owert them to signed format first).

e The sample resolution (i.e. the bits peanpée) can be either 1 - 16 bit for integer
samples or 32 bit for float samples. 1 - 8 bit samples have to be in signed char format
(i.e. one byte per sample), 9 - 16 bit samplesHha be in signed short format (i.e. two
bytes per sample, Iftbyte ordering)f | oat samples have to be normalized to the
range [-1.0..+1.0]. For integer samples, dymgupply the bits per sample value as
resolution. For float samples, supply zero as resolution.

e Both the length of the one-shmdrt and the length of the regigoart of a sample have to
be specified in samples, not bytes. In aalsgtereo samples, the length has to be
specified as number of stereo sample pairs.

e While a sample is playing, the repeat part of the sample can be modified by subsequent
Repl aySet Repeat () function calls. Changing the looprpaf a sample usually doesn't
have an effect immediately. Instead, DeliPtay@mpletely plays the current part (either
one-short or repeat). Once this parteached the end, the playback of the newly set
repeat part starts. If DeliPlayer shouldhediately play the specified looped sample
you have to additionally caflepl aySet Sanpl e() with the same sample pointer and
length.

To actually play a song, callirgpl aySet Sanpl e Or Repl aySet Repeat is usually not enough.
You also have to set the frequency (i.e. ptapi)orate) and the volume of the sample as well.
Often, aRepl aySet Fr equency/Repl aySet Vol une call occurs along witRepl aySet Sanpl e.
Note that a frequency of zermps a playing sample whenfiequency mode and setting the
frequency to a value greateathzero resumes the samplenfrthe stopped point. The volume
of the sample can be set with el aySet Vol une() function. The panninfunction calls are
optional. When not used, a sam@elayed at the center position.

Loading secondary files

Players sometimes need to Isstondary files that belong teetmodule that the user wants to
play. Seeri | eLoad() andFi |l eGet Dat a() . Loading of additional files should be done in

I ni t Modul e() because this function is called ettaonce for each module. Player should
always use the file operation functions frttme DeliAPI because Deli#@er handles archive
extraction and decompression on its own. Iféeample the user plays a tune from a ZIP
archive and the playeerds to load a secondary file (atsmtained in the A archive) then
using the DeliAPI file functions automatically extracts the file from the archive, whereas the
player would have a quite diffittuime doing the same on its own.

If a player needs to load atidnal files that do not belong somodule, e.g. static tables and
configuration files, theri | eLoad() can not be used becawse eLoad() can only be called

in or afterl ni t Modul e() and the loaded files are automatically unloaded afigvbdul e() .
Usef open(), CreateFil e(),ifstreamor similar instead.

Seeking

Seeking means randomly changing the playback position.
DeliPlayer supports three differei@chniques for players to ifgment seeking functionality.
The seeking technigues should be used mutealtjusive (meaning: implement none or one of
these techniques):

e Implement theset Posi ti on() function. Usually used by streaming players.

e Implement thest art Ski p() andst opSki p() functions. Usually u=d by players that

mix themselves.
e Implement theeplay state blockJsually used by mixing players.

SetPosition

The normal (and easiest) way to support seekirsfreaming players is to implement the
Set Posi tion() function. In your imptmentation you call theeek function of the player’s
decoder with the position argumentset Posi ti on().
ImplementingSet Posi ti on() in mixing players or streamg players that do not haveeek
function can be a lot of hard work or be impossible.

StartSkip and StopSkip

DeliPlayer calls the playegs art Ski p() function to tell it thaRender Frane() should do as
little as possible and just irement the playing position ungt opski p() is called. Frames
rendered in betweest art Ski p() andst opSki p() calls are not used for playback.
DeliPlayer ‘skips’ through the song until the degipmsition is reached and then turns off skip
mode.

Replay State Block

The replay state block techniqusually can be used only with thread-safe players whose
replay engine is well understoddis the most dangerous thfe three techniques because the
player developer must be very careful wheplamenting it. However, it is also the most
elegant solution, deast technically.

This technique requires the playergroup together all variatde¢hat are modified during the
replay of a song in one structure, which is called #pday state blockThe player then
exposes the size and address of its repkte flock. During playback DeliPlayer creates
backup copies of the replay state blockantain intervals (about0 seconds). When the
playing position is changed, DeliPlayer checksoltbackup copy is closest before the desired
position, copies the backup copy otihe players replay statéock and calls the players
Render Frane() function until the desired position istaally reached. While skipping to the
desired position DeliPlayer does not mix the frames.

The replay state block should riaet larger than 30 kBytes, otia@se the player should use the
St art Ski p()/ St opSki p() technique or not implement seeking.

Data types used by the DeliAPI 2

The DeliAPI 2 uses only types used in the Gimglconvention. A few typaefs and structures
are defined to improve readability, typdetg and later source level compatibility.

DeliTag

A DeliTag represents one entry in a tag array. dragys are arrays of {id, value} pairs, where
the id describes the meaning of the nexi®aTag arrays are terminated by a {0,0} entry.

DELITagld
The id in a DeliTag.

DELITagValue
The value in a DeliTag.

DELIBool
The bool data type. Allowed values @1 _TRUE andDELI _FALSE.

DELIFile
A handle to a DeliAPI file.

DELIResult
The data type returned by DeliARIfunctions and plugin functions.

DELIVersion
The data type used for storing version information.

DeliNamedVariable

A DeliNamedVariable represents one entry ia #nray that describaéise variables a plugin
exposed to DeliPlayefcurrently unused)

DeliNamedVariableValue

DeliNamedVariableValue is a union used to access the different data types a named variable
exposed by DeliAPI plugin can have (currently unused).

Player plugin interfaces

DeliPlayer player plugins contain implementations ofitbe i Pl ugi nCont ai ner and

| Del i Pl ugi nPl ayer interfaces.

Overview:

Get Del i Pl ayer Pl ugi nCont ai ner | Returns the containebject. (Singleton)

IDeliSocketPlayer

Initialize Perform internal initialization

I nformation Return information about the plugin container
Getl D Return the IID of the plugin at the specified index position
Createl nstance Instantiates a plugi(Abstract Factory)

G eanup Deinitialize the plu@n container object.
IDeliPluginPlayer:

I'ni t Plugin Initializes the player instance

Check Check if a file is in a supported format

I 'ni t Mbdul e Initializes the player to start playing a file

I ni t Song Set the sub-song index to play

StartPl ay Start the playback

Start Skip Activate skip mode

Render Fr ane

Render one frame of audio/music data

Set Posi tion

Jump to a different playback position

EndSki p Deactivate skip mode

EndPl ay Stop playback

EndSong Deinitialize the song

EndModul e Deinitialize from playback

EndPl ugi n Deinitialize the plugin

Pl ugi nl nformation Provides information about the player, e.g. Name, Copyright
Set Vari abl e Modify the specified plugin variable with the provided value
GetVariabl e Return the current value ofdlspecified plugin variable

Set Var i abl esAppl yMde <currently unused>

Noti fy <currently unused>

Confi ghi al ogOpen

Open the configuration dialog for the player

Confi ghi al ogC ose

Close the configuration window

Confi gDi al ogAppl y

Apply the settings from the config. dialog to the player

Confi ghi al ogRest ore

Reset config. dialog to theettings of the player

Conf i gDef aul t

Reset the settings of the péyto their default values

Confi gApply Apply the settings onother instance
ConfigSave Save the configuration file
Confi gLoad Load the configuration file

Conf i gChanged

Return true if the configuration was changed

Songl nf ormat i on

Return information about a song

Sanpl el nf ormati on

Returns information about a sample

I nstrunent | nf ormati on

Return information about an instrument

Messagel nf or mati on

Return a song-message

GetDeliPlayerPluginContainer

GetDeliPlayerPluginContainer ibe only function that is diotly exposed through the DLL.
DeliPlayer calls it to retrieve a pointer to tt@ntainer object of #hplugin DLL (Singleton).

IDeliPluginContainer

Initialize

Performs internal initialization that is needmay once for all plugin instances like loading
additional libraries and prealculating static tables.

Returns:

DELI Resul t Success or failure

Parameters: none

Cleanup

Called only if theprevious call tani ti al i ze() succeeded.
Free all resources allocated in the last callnia i al i ze()
Returnsvoi d

Parameters: none

Information

Return information about the plugin containerri@atly this tag-arrayses one single entry.
DATA Cont ai ner _NunPl ugi ns providing the number of diffent plugin (player) classes the
container supports.

It is, however, recommended to implementyaohe plugin (player) class per container.
Returns:

Del i Tag* Pointer to the tag-array contaigiinformation about the container
Parameters: none

GetlID

Called only if theprevious call toni ti al i ze() succeeded.

Returns the 11D (Interfae1Dentifer) of the intdace that the plugin (player) object at index
pl ugi ni ndex implements.

It is recommended to implement only on&upn) player class per DLL, so your
implementation ofset 1 1 D() would returni | D_I Del i Pl ugi nPl ayer for pl ugi ni ndex==0.
Returns:

REFI | D The 1ID

Parameters:

i nt plugi ni ndex | |

Createlnstance

Create an instance of the player class at iptlegi ni ndex. The REFIID parameter explicitly
specifies the interface the plugiplayer) object must implemerif the class at index

pl ugi ni ndex does not implement the requested interfaceat el nst ance() should return
DELI _RESULT_ERROR_FAI LED.

Returns:
DELI Resul t Success or failure

Parameters:

int plugini ndex The index of the requested plugin class

REFI 1 D The 11D of the requested object

PPVA D Pointer to a void pointer, intwhich your implementation copies
the pointer to the created instance.

IDeliPluginPlayer

InitPlugin

Called once per player instance.

Initialize the player instance. ThSocket parameter points to an object implementing the

| Del i Pl ayer Socker interface through which the player calls functions in DeliPlayer. It should
be stored for later use. The object remains valid until Eft&Pl ugi n() is called.

Returns:

DELI Resul t Success or failure

Parameters:

PVOI D pSocket | Pointer to the socket object.

EndPlugin

Called only if theprevious call ta ni t Pl ugi n() succeeded.

Deinitialize the player instance and free all resesrallocated in and sim¢he previous call to
I nitPlugin().

Returnsvoi d

Parameters: none

Plugininformation

Called only if theprevious call ta ni t Pl ugi n() succeeded.

Called to retrieve infor@tion about the player.

Returns:

Del i Tag* The tag-array containing information about the plugin.
Parameters: none

SetVariable

Currently unused

Returns:
DELI Resul t

Parameters:

int varid

Del i NanedVari abl eval ue Val ue

GetVariable

Currently unused

Returns:
DEL| Resul t

Parameters:

int varid

Del i NamedVar i abl eval ue* pVal ue

SetVariablesApplyMode

Currently unused
Returns: void
Parameters:

int |

Notify

Currently unused
Returnsvoi d
Parameters:

unsi gned int event

unsi gned int datal

unsi gned int data2

ConfigDialogOpen

Called only if theprevious call ta ni t Pl ugi n() succeeded.

Open the player’s configuration dialog. Thendow should not have a border and no drag-bar
because DeliPlayer will display the windamgide its own configuration window.

Returns:

HWD The handle of the configuration wiomt, or NULL in case of an error.

Parameters: none

ConfigDialogClose

Called only if theprevious call taconf i ghi al ogQpen() succeeded.

Close the configuration dialog afreée all resources allocateddnnf i ghi al ogOpen()
Returnsvoi d

Parameters: none

ConfigDialogApply

Called only if theprevious call ta ni t Pl ugi n() succeeded.
Apply the settings from the cagfiration dialog to the player.
Returnsyvoi d

Parameters: none

ConfigDialogRestore

Called only if theprevious call ta ni t Pl ugi n() succeeded.
Set the configuration dialog todlplayer’s current settings.
Returnsvoi d

Parameters: none

ConfigDefault

Called only if theprevious call ta ni t Pl ugi n() succeeded.
Reset the player’s settings to the default values.
Returnsvoi d

Parameters: none

ConfigApply

Called only if theprevious call ta ni t Pl ugi n() succeeded.

Apply the settings of another imsice of the same player taglnstance of the player. If your
player has a configuration do) you also should implement thenf i gAppl y() function
otherwise only one instance of yquliayer can be re-configured.

Returnsvoi d

Parameters:

voi d* newcfg | A pointer to the settings data afother instance of the same player |

ConfigSave

Called only if theprevious call ta ni t Pl ugi n() succeeded.

Save the settings of the player. Players ussidise their settings in a file in the current
directory (which DeliPlayer sets to the appiaf# location). There arcurrently no rules on
how players should store their settings.

Returns:

DELI Resul t Success or failure

Parameters: none

ConfigLoad

Called only if theprevious call ta ni t Pl ugi n() succeeded.
Load the settings of the player.

Returns:

DELI Result Success or failure

Parameters: none

ConfigChanged

Called only if theprevious call ta ni t Pl ugi n() succeeded.

Called by DeliPlayer to check iféhsettings of the player hagbanged since the last call to
Confi gLoad() Or Confi gSave().

Returns:

DELI Bool DELI _TRUE if the settings have changeasl| _FALSE otherwise.

Parameters: none

Check

Called by DeliPlayer for every file that is loadéfdyour check code identifies the file and the
plugin can play it, returrbeLl _RESULT_OK. If the file was identifid but is corrupt (e.g. too
short), returrdELI _RESULT_ERROR_FORMATCORRUPT. If the file is anunsupported sub-format,
returnDELI _RESULT_ERROR_FORMATNOTSTANDARD, otherwise return

DELI _RESULT_ERROR_FAI LED.

Never store anything retrieved via tbiL| Fi | e argument (i.e. data pointers, size)

Returns:

DELI Resul t Valid Values: DELI _RESULT K
DELI RESULT ERRCR FAI LED
DELI RESULT_ ERROR_FORNVATNOTSTANDARD
DELI RESULT ERROR_FORMVATCORRUPT

Parameters:

DELIFile | The file to check

InitModule

Called only if theprevious call tacheck() succeeded.

Initializes the plugin/provided datess needed to start playback. aenar yfi | e remains
valid until afterEndMbdul e() or until it is explicitly unloaded bthe player. The content of the
primaryfile (retrieved withFi | eGet Dat a()) can be modified by the player.

Returns:

DELI Resul t Valid Values: DELI _RESULT_OK
DELI _RESULT_ERROR FAI LED
DELI _RESULT_ERROR_FORMATNOTSTANDARD
DELI _RESULT_ERROR FORMATCORRUPT

Parameters:

DELIFile primaryfile ‘ The file to play

EndModule

Called only if theprevious call ta ni t Modul e() succeeded.

Eject the file and resdéhe replay engine. The player shotree all resources allocated in and
since the previousni t Modul () andl ni t Song() calls.

Returnsvoi d

Parameters: none

InitSong

Called only if theprevious call ta ni t Modul e() succeeded.
Initializes the replay engirnte play the provided song index.

Returns:
DELI Resul t Success or failure
Parameters:
[int songi ndex | The index of the sub-song to play
EndSong

Called only if theprevious call ta ni t Song() succeeded.

Deinitialize the engine from playing a sub-sombe player should freelaksources allocated
in and since the previousi t Song() call.

Returnsvoi d

Parameters: none

StartPlay
Called only if theprevious call ta ni t Song() succeeded .

Start playback. This method is usually unuseldpwever is is required to implement players
that require their own threamt access/requi@synchronous) devices for playback (ie.:
MIDI,CDDA).

Returns:

DELI Resul t Success or failure

Parameters: none

StopPlay

Called only if theprevious call test art Pl ay() succeeded.

The player should free all resourcds@ated in and since the previostsart Pl ay() call.
Returnsyvoi d

Parameters: none

StartSkip

Called only if theprevious call test art Pl ay() succeeded.

Switch the replay engine to skip mode. The figrs should be implemented in players that do
all mixing themselves. When in skip mode, the playrsigier Fr anme() function should do as
little as necessary to proceed from one frame next frame and should not generate any
output data.

Returns:

DELI Resul t Success or failure

Parameters: none

StopSkip

Called only if theprevious call tcst ar t Ski p() succeeded.
Switch off skip mode.

Returnsvoi d

Parameters: none

RenderFrame

Called only if all previous calls tihe player’s Init functions succeeded.

Render one frame of audio/music data. A ‘framsually covers between 1/100 to 1/10 second.
It should never exceed 2 seconds.

Returns:

DELI Resul t Success or failure

Parameters: none

SetPosition

Called only if all previous calls tie player’s Init functions succeeded.
Set the playback positiatPosi ti on is a floating point value coaining the desired playback
position in seconds, with &ast millisecond precision.
Returns:
DELI Resul t Success or failure
Parameters:
| doubl e dPosi tion | The time position (in seconds) to jump to

SonglInformation

Called only if theprevious call ta ni t Modul e() succeeded.

Return a tag-array containing information ab@awspecific sub-song diie currently loaded
module. Thesongi ndex argument specifies the sub-song for which information is requested.
An index of -1 is used to get module glofaib-song unspecific) information. Players/formats
that do not support sub-songs (like most streaming formats)dsteiuln a tag-array only for
songi ndex arguments -1 and/or 0.

Players should return as much information assfide, so don't be lazy in your implementation.
Returns:

Del i Tag* Pointer to a tag-array, &'ULL in case of an error.
Parameters:
| int songi ndex | The index of the song for which information is requested |

InstrumentIinformation

Called only if theprevious call ta ni t Modul e() succeeded.

Return a tag-array containing information abaut instrument of a specific sub-song of the
currently loaded module. See aBongInformation(for an explanation of theongi ndex
argument. DeliPlayer will call th function with incrementingnst r ument i ndex argument
until it returns NULL to indicate that éhrequested instrument does not exist.

Returns:

Del i Tag* Pointer to a tag-array, &¥ULL in case of an error.

Parameters:
int songi ndex The index of the song for which information is requested
int instrunmentindex The index of the instrument for which information is requested

Samplelnformation

Called only if theprevious call ta ni t Modul e() succeeded.

Return a tag-array containing information abosample of a specific busong of the currently
loaded module. See alSmnginformation(for an explanation of th&ngi ndex argument.
DeliPlayer will call this function with incrementirgnpl ei ndex argument until it returns
NULL to indicate that the requested sample does not exist.

Returns:

Del i Tag* Pointer to a tag-array, &¥ULL in case of an error.

Parameters:

int songi ndex The index of the song for which information is requested
int sanpl ei ndex The index of the sample for which information is requested

Messagelnformation

Called only if theprevious call ta ni t Modul e() succeeded.
Return a tag-array containing the message. Se&alsginformation(for an explanation of
thesongi ndex argument. DeliPlayer will call this function with incrementingsagei ndex
argument until it returns NULL to indicate thae requested message does not exist.
Returns:
Del i Tag* Pointer to a tag-array, &'ULL in case of an error.
Parameters:

| i nt_songi ndex | The index of the song for which information is requested |

| i nt nessagei ndex | The index of the message for which information is requested|

Formatinformation

Called by DeliPlayer to retrieve informatiabout the formats supported by this player.
DeliPlayer will call this function with incrementirigr mat i ndex argument until it returns
NULL to indicate that the requested format doesaxat. If a player supports more than one
format (with the same replay engine) therhib@d return one formaag array for each (sub)
format supported.

Returns:
Del i Tag* Pointer to a tag-array, &'ULL in case of an error.
Parameters:
| int formatindex | The index of the song for which information is requested |

FileExtensionInformation

Called by DeliPlayer to retrieve information abthg file extensions gyported by this player.
DeliPlayer will call this function with incrementirext i ndex argument until it returns NULL
to indicate that the requestii@ extension does not exist.
DeliPlayer will offer the user to register théefextensions the player exposes. You should be
careful not to expose file extensions (althobglonging to the format your player supports)
that are known to be used by widely spreadiagpbns so users cantraccidentally disable
theclick to launch behavior they are used to/expect.
Returns:
Del i Tag* Pointer to a tag-array, &¥ULL in case of an error.
Parameters:

| int extindex | The index of the song for which information is requested |

IDeliSocketPlayer interface
Thel Del i Socket Pl ayer interface describes the functiobsliPlayer exposes to its player

plugins. Players access them through the socletiirovided by DeliPlayer in the call to the

player’si ni t Pl ugi n() function.

Overview:

I ni t Repl ay

Initialize the replay engine

I ni t Channel

Initialize a specific channel

Set St at eDat a

Set the pointer to the players replay state block

Get St at eDat a

Retrieve the replay state block set earlier

Set Confi gDat a

Set the pointer to thegjer configuration data

CGet Confi ghat a

Retrieve the player configuiah data pointer set earlier

Cet Qut put Frequency

Retrieve the current output frequency

Repl aySet Speed

Change the replay speed

Repl ayNot i f ySongEnd

Notify the core that the end of the song was reached

Repl aySet Sanpl e

Start playing a sample on a channel

Repl ay St opSanpl e

Stop the currently playing sample on the channel

Repl aySet Repeat

Initializes a looped sample on the channel.

Repl ayFi ni shRepeat

Stops playing the loop part

Repl aySet Vol une

Set the volume on a channel

Repl aySet Pan

Change the panning on the channel

Repl aySet Fr equency

Set/change the sample frequency on the channel

Repl ayl nvert Pl ayi ngDi recti on

Invert the playing direction of the loop part

Fi | eLoad

Completely load a file into memory

Fi | eSeek Seek to a new position in a file

Fi | eRead Partially read the content of a file

FileTell Retrieve the current absolute position in a file
Fi | eGet Retrieve &DELI Handl e

FileAlloc Create an in-memory ‘file’

Fi | eUnl oad Close a file and free its memory

Fi | eGet Dat a Retrieve the files content

Fi | eGet Nane

Retrieve the name and path of the file

InitReplay

Call InitReplay in your implementation of InitMode() or InitSong(). linitializes the replay
and mixer engines in DeliPlayer.

Returns:

DELI Resul t, Indicates success or failure

Parameters:

unsigned int nChannel's | The number of channels used by the loaded song
int nmaxFrequency The maximum frequency

i nt maxVol une The maximum volume

int nmaxPanni ng The maximum panning

i nt periodBase See here

int tinmerBase The initial speed, see here
int tinmerSpeed The initial speed, see here
unsigned int flags

InitChannel

Call I ni t Channel () to set a channel to a default state. This function should be called in
I ni t Modul e() OrlnitSong().
Returnsvoi d

Parameters:
unsi gned int i Channel The index of the channelahshould be initialized
i nt nunchannel s The number of channels (mono/stereo) Valid values: 1, 2
int resolution The sample resolution.
Valid values: O (float samplel — 16 (integer sample)
int frequency The initial replay sample rate
int volune The initial volume
int horizpan The initial horizontal (left/right) panning
int depthpan The initial depth (font/back) panning
SetStateData

Call SetStateData() to set the @pbtate block pointer. If yoyrayer supports the replay state

block feature, you should call &gateData() in your implementation of the InitPlayer()
function. Usually used only by mixing players.
Returnsvoi d

Parameters:
| voi d* statedata | The pointer to the replay séablock of the player plugin
GetStateData
Retrieve the pointer to the replatate block your player set earlier.
Returns:

voi d* The pointer to your plar’s replay state block.
Parameters: none

SetConfigData

Call SetConfigData() tset the pointer to your playergemal configuration structure.
DeliPlayer handles this pointer without knongianything about the structure/implementation
of the player’s configuration.

If your player does not have ardiguration, SetConfigData() shoutat be called. If your
player has a configuration mdow/structure, SetConfigDataf)auld be called otherwise only
one instance of your player can be re-congguwith its config dalog. This is necessary
because DeliPlayer works with at least twoanses of every player plugin. To avoid forcing
the user to re-configure each instance effilugin, DeliPlayer dis the ConfigApply()

function of every instance with the pointerti@ configuration struate of the one instance
whose dialog was actually chand®dthe user, so these instancas also apply the modified
configuration.

Returnsvoi d
Parameters:

voi d* configdata | The pointer to the confidata of the player plugin

GetConfigData

Retrieve the pointer to the configtiom structure your player set earlier.
Returns:

voi d* The pointer to your plar’s replay state block.

Parameters: none

GetOutputFrequency

Retrieve the current output sample ratgoldir player requires theutput sample rate you
should call GetOutputFrequency in your igmplentation of InitModule() or InitSong().
The output sample rate is guaranteed todestant between the tsato the player’s
InitModule() and EndModule() functions. Usualiged only by players that do all mixing
themselves.

Returns:

int The output sample rate (frequency).

Parameters: none

SetTotalFileSize

Call SetTotalFileSize() after yourgyer has loaded all isecondary files. Téntotal file size is
not used by DeliPlayer, it is an informationaluathat can be displayed in the user interface.
If your player uses DeliPlayer’s File ARl load secondary file, you do not need call
SetTotalFileSize(), you can however call ibierride the internallgalculated value.
Returnsvoi d

Parameters:

doubl e nBytes The total size (in bytes) ofldiles belonging to the currently
loaded song. Theoubl e type is used to allow setting values
greater than (2"32)-1

SetTotalRealSize

Call SetTotalRealSize() after youragkr has loaded all its secondéitgs. The total real size is
not used by DeliPlayer, it is an informationaluathat can be displayed in the user interface.
If your player uses DeliPlayer’'s File ARI load secondary file, you do not need call
SetTotalRealSize() unless your player furthesamhepresses the files belging to the currently
playing song. You can call it to override the internally calculated value.

Returnsvoi d

Parameters:

doubl e nBytes The total size (in bytes) oflalecompressed files belonging to
the currently loaded song. Theubl e type is used to allow
setting values greater than (2°32)-1

ReplayIlnformationChanged

Call ReplaylnformationChanged() if a info valehanges while playing the song. This function
is usually used only by streaming players todaicast a changed bitrate for variable bitrate
streams.

Returnsyvoi d

Parameters:
int eWat Specifies which value has changed
unsi gned int val ue The new value

ReplaySetSpeed

Call ReplaySetSpeed to change the replay spagdg replay for mixinglayers. Do not call

this function in streaming playemepl aySet Speed() actually increases/decreases the size of
a sample frame. Using an argument of zero is not allowed.

Returnsyvoi d

Parameters:

int speed The newt i mer speed value. Must not be 0.
See alsonitReplay.

ReplayNotifySongEnd

Call ReplayNotifySongEnd() from within yoimplementation of RenderFrame() when the
player reaches the end of the song while processing the frame.

Returnsvoi d

Parameters:

int songendflags The location of the songend.
Valid values: ODELI _ SONGEND ATENDOFFRANME

ReplaySetSample

Call ReplaySetSample to staraiping the one-shot part of amstrument on a channel. Used
only by mixing players. Streaminggyler only use ReplaySetRepeat().
Returnsvoi d

Parameters:

i nt i Channel The index of the channel on igh to play the instrument

i nt nunChannel s The number of channels usetefgo/mono). Valid values: 1,2
int resolution The sample resolwth. Valid values: 0,1-16

voi d* pSanpl es The pointer to the start of the sample array

unsi gned int nSanpl es The number of samples in the sample array (one stereo sample
counts as one sample)

ReplayStopSample

Call ReplayStopSample() to stop playing the sar{qhe-shot as well as repeat part). This
function immediately silences the channel.

Returnsvoi d

Parameters:

i nt i Channel | The index of the channel

ReplaySetRepeat
Returnsyvoi d

Parameters:
i nt i Channel The index of the channel
voi d* pSanpl es The pointer to the sample array.

unsi gned int nSanpl es The number of samples in the sample buffer (one stereo sample

counts as one sample)

int |ooptype The loop type. Valid values: DELI_LOOPTYPE_Forward,
DELI LOOPTYPE Backwat, DELI LOOPTYPE_ PingPong

ReplayFinishRepeat

Call ReplayFinishRepeat() to stpfaying the loop-shot part theext time it would be repeated.
Returnsvoi d

Parameters:

int i Channel | The index of the channel |

ReplaySetVolume

Call ReplaySetVolume() to set the volume of a channel.
Returnsvoi d

Parameters:
i nt i Channel The index of the channel
int volune The new volume

ReplaySetPan

Call ReplaySetPan() to set the horizontal (tefbt) and depth (front/back) pan position of a
channel. Currently, depth panning can only bedus play on the surround speaker by setting
hori zpan to O anddept hpan to themaxpanni ng value specified in the InitReplay() call.
Returnsvoi d

Parameters:

int i Channel The index of the channel

int horizpan The new horizontal (left/right) pan position
int depthpan The new depth pan (front/back) position

ReplaySetFrequency
Call ReplaySetFrequency() to chartge sample rate of a channel.

Returnsvoi d

Parameters:
i nt i Channel The index of the channel
int frequency The new sample rate (i.period or frequency)

ReplaylnvertPlayingDirection

Call ReplaylnvertPlayingDirection() to changayihg direction of théoop-part of a sample
from forward to backward or vice versa.

Returnsvoi d

Parameters:

i nt i Channel | The index of the channel

FileLoad

Call FileLoad() to load a file into memory.tlie file does not contain an absolute path,
DeliPlayer tries to load it from the sameatitory or archive in which the primary file is
located. If the file is compressed witlk@own compressor, it will automatically be
decompressed. To access the content of the filEbatbetData()

Returns:

DELIFile A handle to the loaded file, or NULL in case of an error.

Parameters:

const char* filenane | The name of the file to load

FileSeek

Call FileSeek() to seek to a new position ifle@ Usually used only by streaming players.
Returns:

doubl e The new absolute position in the file.

Parameters:

doubl e newposi tion The position to seek to

int disposition The seek disposition. Valid value®Ll _SEEKORI G N_BEG N,
DELI _SEEKORI Gl N_CURRENT, DELI _SEEKORI Gl N_END

FileRead

Call FileRead() to partially read #ef. Used only by streaming players.
Note: Due to the absence of a FileOpen() fimmg you currently can udéleRead() only with
the primary file.

Returns:
DELI Resul t Success or failure.
Parameters:
|DELIFile file | The file to read from
FileTell

Call FileTell() to retrieve the current absolute position Dfa Fi | e. Usually used only by
streaming players.

Returns:

doubl e The current absolute position in the file.

Parameters:

|DELIFile file | The file of which to tell the position |

FileGet

Call FileGet() to theELI Fi | e handle of the file at a speiciindex position. Index O is the
primary file.

Returns:

DELI File The handle to the file, or NULL in case of an error.

Parameters:

int i ndex | The index of the file \

FileAlloc

Call FileAlloc() to create a new ‘file’ in memaryhis mechanism is usually used by players to
convert files in memory (deaapress, re-structure). CallleUnload()to free the file when the
player no longer needs it. Note tizliPlayer automatically frees &Ll Fi | es after the
EndModule() function of thplayer has been called.

Returns:

DELIFile The handle to the new in-memory file.

Parameters:

int buffersize The index of the file

const char* filenane The name of the file. Not used by DeliPlayer.

int wallsize The size of a ‘no mans land’ area(l) behind the file. Using a
wall can be useful e.g. for decompressing files when the
decompressor temporarily requires additional space in the
destination buffer, or for sedty when dealing with too short
files.

FileUnload

Call FileUnload() to free BELI Fi | e. Note that you can also free the primary file with this
function (for example aftezonverting/decompressing it initModule() or InitSong().
Returnsvoi d

Parameters:
|DELIFile file | The file to free

FileGetData

Call FileGetData () to ret@ve the contents of ZELI Fi | e.

Returns:

DELI Resul t Success or failure

Parameters:

DELIFile file The file to free

voi d** pData Pointer to pointer (!) into which DeliPlayer copies the pointer
to the file data array.

unsigned int* pSize Pointer to an unsigned int (!) into which DeliPlayer copies the
size in bytes of thfile data array.

FileGetName
Call FileGetName() to retrieve the filename @izl Fi | e.

Returns:
DELI Resul t Success or failure.

Parameters:
DELIFile file The file to free
char* namebuf f er A pointer to a char-array intehich DeliPlayer copies the file

name.

int nanebufferlen The size (in chars) of the char-array.

Appendix

Terminology

The following terminology explains how the terms are used in the DeliAPI 2 documentation.
Not all definitions are globally valid.

Module

A set of files which belong together. To use a megdall its files must be available. Most of
the time one single file builds a module, likep3, .mod, .it. Examples of formats with
modules that consist of at least tfiles are TFMX and SoundTracker-Songs.

Sub-song

Modules usually contain one song (e.g. MPB®wever, certain formats (e.g. TFMX) support
several songs per module. If it is importanatinress a specific songanimodule, it is called
‘sub-song’. Most of the time it is flowed by the index of the sub-song.

Example: Player ‘xyz’ plays sufsng 3 of module ‘test sound'.

One-shofpart
The part of a sample based instrument that is played only once.

Loop part
The part of a sample basedtiument that is repeated.

Replay state block
See theReplay State Blockescription.

Mixing
Mixing is the operation that combines two or more channels into one channel.

Streaming player

A streaming player is a player thatedonot use DeliPlayer's mixing functionality.
Examples: WAV-player, MP®layer, OGG Vorbis—player.

Streaming players should set therer base andti ner speed arguments in their call to
I ni t Repl ay() t0O.

Tag-array
An array of {tag,value} pairs. Used in Del#yer for exchanging information between plugins
and the core. See alBzliTag

Interface
The definition of a set of functions to be implemed and later instantiated in one object. (in
C++: a class without any members conitag only virtual metods that are pure).

Class
The implementation of an interface.

Object
The instance of a class.

License

You are free to use the sou@des included in the DeliARI package for creating player
plugins for DeliPlayer. You manot redistribute modified versns of the DeliAPI 2 package.
DeliAPI 2 documentation and include filegearopyrighted © 1997-2003y Florian Vorberger
and Peter Kunath.
e The Player_Shorteproject and its files are relessunder the GNU Public License
(GPL).
e ThePlayer_MixingDemaroject and its files are copyrighted © 2004 by Florian
Vorberger and are provided for demonstration purposes.

THIS SOFTWARE IS PROVIDED ON AN "& IS" BASIS. YOU ASSUME THE ENTIRE
COST OF ANY DAMAGE RESULTING F®M THE INFORMATION CONTAINED IN
OR PRODUCED BY THIS SOFTWRE PRODUCT. YOU ASSUME ALL
RESPONSIBILITIES FOR SELECTION OF THIS SOFTWARE PRODUCT TO ACHIEVE
YOUR INTENDED RESULTS, AND FOR TH INSTALLATION OF, USE OF, AND
RESULTS OBTAINED FROM IT. TOTHE MAXIMUM EXTENT PERMITTED BY
APPLICABLE LAW, THE SELLER AND OHERS WHO MAY DISTRIBUTE THIS
SOFTWARE PRODUCT DISCLAIM ALLWARRANTIES, EITHER EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PRTICULAR PURPOSE, CONFORMANCE
WITH DESCRIPTION, AND NON-INFRNGEMENT, WITH RESPECT TO THIS
SOFTWARE PRODUCT.

Note that a separate licengmphes to open source softwarelmded in the DeliAPI package.

Diagrams

Plugin DLL

Plugin Container

Player A

Instance 1 Instance 2 Instance 3
Player B

Instance 1 Instance 2 Instance 3

(containers can contain one or many player plugins)

Diagram 1: Basic object structure

«datatype»
DELIResult

«datatype» «datatype» «datatype»
DELIFile DELITag DELIBool

«interface»

IlUnknown
+QuerylInterface()
+AddRef()
+Release()

=

«interface»
IDeliPluginContainer

«interface»
IDeliPlugin

+Initialize() : DELIResult
+Information() : DELITag
+GetlID() : sequence(idl)
+Createlnstance() : DELIResult
+Cleanup()

+InitPlugin() : DELIResult
+EndPlugin()
+Plugininformation() : DELITag
+Configinformation() : DELITag
+SetVariable() : DELIResult
+GetVariable() : DELIResult
+SetVariablesApplyMode()
+Notify()

+ConfigDialogOpen() : object(idl)
+ConfigDialogClose()
+ConfigDialogApply()
+ConfigDialogRestore()
+ConfigDefault()
+ConfigApply()

+ConfigSave() : DELIResult
+ConfigLoad() : DELIResult
+ConfigChanged() : DELIBool

«interface»
IDeliSocket

+SetVariable() : DELIResult
+GetVariable() : DELIResult
+GetVariableBuffer() : DELIResult
+SetVariableBuffer() : DELIResult
+NotifyVariableChanged()

«interface»
IDeliPlayerPlugin

«interface»
IDeliSocketPlayer

+Check() : DELIResult
+InitModule() : DELIResult
+InitSong() : DELIResult
+StartPlay() : DELIResult
+RenderFrame() : DELIResult
+SetPosition() : DELIResult
+StopPlay()

+EndSong()

+EndModule()
+Songlnformation() : DELITag
+Instrumentinformation() : DELITag
+Samplelnformation() : DELITag
+Formatinformation() : DELITag

+FileExtensioninformation() : DELITag

+InitReplay() : DELIResult
+InitChannel()
+SetStateData()
+GetStateData()
+SetConfigData()
+GetConfigData()
+GetOutputFrequency() : int
+ReplaySetSpeed()
+ReplayNotifySongEnd()
+ReplaySetSample()
+ReplayStopSample()
+ReplaySetRepeat()
+ReplayFinishRepeat()
+ReplaySetVolume()
+ReplaySetPan()
+ReplaySetFrequency()
+ReplaylnvertPlayingDirection()
+FileLoad() : DELIFile
+FileSeek() : double
+FileRead() : DELIResult
+FileTell() : double
+FileGet() : DELIFile
+FileAlloc() : DELIFile
+FileUnload()
+FileGetData() : DELIResult
+FileGetName() : DELIResult

Diagram 2: DeliAPI 2 interface structure

	Introduction
	Contents of the DeliAPI 2 package

	Basics
	Architecture
	Special features of the DeliAPI 2

	How to develop a player plugin
	Basic steps for implementing a player plugin
	Implementing the replay code
	Allocating and initializing channels
	Playing samples
	Loading secondary files

	Seeking
	SetPosition
	StartSkip and StopSkip
	Replay State Block

	Data types used by the DeliAPI 2
	DeliTag
	DELITagId
	DELITagValue
	DELIBool
	DELIFile
	DELIResult
	DELIVersion
	DeliNamedVariable
	DeliNamedVariableValue

	Player plugin interfaces
	GetDeliPlayerPluginContainer

	IDeliPluginContainer
	Initialize
	Cleanup
	Information
	GetIID
	CreateInstance

	IDeliPluginPlayer
	InitPlugin
	EndPlugin
	PluginInformation
	SetVariable
	GetVariable
	SetVariablesApplyMode
	Notify
	ConfigDialogOpen
	ConfigDialogClose
	ConfigDialogApply
	ConfigDialogRestore
	ConfigDefault
	ConfigApply
	ConfigSave
	ConfigLoad
	ConfigChanged
	Check
	InitModule
	EndModule
	InitSong
	EndSong
	StartPlay
	StopPlay
	StartSkip
	StopSkip
	RenderFrame
	SetPosition
	SongInformation
	InstrumentInformation
	SampleInformation
	MessageInformation
	FormatInformation
	FileExtensionInformation

	IDeliSocketPlayer interface
	InitReplay
	InitChannel
	SetStateData
	GetStateData
	SetConfigData
	GetConfigData
	GetOutputFrequency
	SetTotalFileSize
	SetTotalRealSize
	ReplayInformationChanged
	ReplaySetSpeed
	ReplayNotifySongEnd
	ReplaySetSample
	ReplayStopSample
	ReplaySetRepeat
	ReplayFinishRepeat
	ReplaySetVolume
	ReplaySetPan
	ReplaySetFrequency
	ReplayInvertPlayingDirection
	FileLoad
	FileSeek
	FileRead
	FileTell
	FileGet
	FileAlloc
	FileUnload
	FileGetData
	FileGetName

	Appendix
	Terminology
	License

